第一图书网

数学分析原理与方法

胡适耕 张显文 科学出版社
出版时间:

2008-5  

出版社:

科学出版社  

作者:

胡适耕 张显文  

页数:

427  

Tag标签:

无  

内容概要

  本书概括性地处理了数学分析的基本内容,力图帮助读者克服横亘在数学分析与其他数学课程间的障碍,并适时建立数学分析与其后续课程间的联系,以期使读者获得关于数学分析的作用与地位的正确认识。书中精选了数量可观的例题,对其中一部分作了详细解答,对余下的也给出了一定提示或答案,以供读者作练习之用。  本书可作为数学分析课程的教材,也可作为正在学习数学分析和准备考研的大学生的参考用书,还可供讲授数学各课程的教师、数学教育家以及广大数学爱好者参考。

作者简介

  胡适耕,湖南湘乡人。1967年毕业于湖南大学数学系,1979年起在华中理工大学(即今华中科技大学)任教。现为华中科技大学数学系教授、博士生导师,并兼任《应用数学》杂志常务副主编。长期从事基础数学与应用数学的教学和研究,主要研究领域为非线性动力系统与随机动力系统。发表了一系列研究论文与著作,代表性著作有《非线性分析》、《抽象空间引论》、《宏观经济的随机模型》等  张显文,男,教授,1962年生,湖北省数学会函数论与泛函分析专业委员会委员。

书籍目录

前言记号与约定几点说明第1章 引论§1 集合§1.1 集及其运算§1.2 映射§1.3 可数集§2 实数§2.1 实数及其顺序§2.2 有理运算§2.3 初等函数§3 Euclid空间§3.1 线性结构§3.2 度量§3.3 点集§3.4 复平面§4 极限§4.1 数列极限§4.2 上极限与下极限§4.3 基本定理§4.4 Rn中的极限§4.5 函数极限§4.6 无穷小与无穷大§5 连续性§5.1 连续函数类§5.2 基本定理§5.3 一元函数情形第2章 微分学§6 一元函数微分学§6.1 导数与微分§6.2 中值定理§6.3 Taylor公式§6.4 某些应用§7 多元函数微分学§7.1 偏导数与微分§7.2 高阶微分与Taylor公式§7.3 向量函数微分学§7.4 隐函数定理§8 单调函数与凸函数§8.1 单调函数§8.2 凸函数§9 极值§9.1 自由极值§9.2 条件极值§9.3 应用§10 曲线与曲面§10.1 曲线§10.2 曲面第3章 积分学§11 不定积分§11.1 概念§11.2 基本积分法§11.3 几类函数的积分§12 定积分§12.1 定义与可积性§12.2 积分性质§12.3 积分计算§12.4 积分的近似计算§12.5 某些应用§12.6 有界变差函数§13 重积分§13.1 定义与性质§13.2 计算§14 曲线积分与曲面积分§14.1 曲线积分§14.2 曲面积分§14.3 积分公式§14.4 几何与物理应用第4章 无穷级数§15 数项级数§15.1 收敛性§15.2 运算性质§15.3 某些推广§15.4 无穷乘积§15.5 某些应用§16 函数级数§16.1 极限函数§16.2 函数级数§16.3 某些函数展开式§16.4 函数逼近§17 幂级数§17.1 般性质§17.2 展开函数为幂级数§17.3 某些应用§17.4 多重幂级数§18 参变积分§18.1 收敛性§18.2 极限互换§18.3 几个常用积分§18.4 广义重积分§19 Fourier级数§19.1 Fourier系数§19.2 收敛性§19.3 正交函数系§19.4 Fourier变换参考书目

章节摘录

  第1章 引论  数学分析的主体内容——微积分学,远在300多年以前就大体形成了。然而,微积分学的先驱者——主要是Newton与Leibniz——并不是用你今天在数学分析中所看到的方式表述微积分。他们的方法尽管实用上有效,但从严格的逻辑要求来看并无依据。大约200年之后,Cauchy,Riemann等人才为微积分学补建了逻辑基础,其主要步骤就是将微分与积分定义为特定形式的极限运算。为使极限理论具有一个坚实的基础,又必须使极限运算赖以施行的实数系的构建完全符合严格的逻辑要求,这一点由Dedekind等人建立的实数理论做到了。这样一来,在进入微积分学之前,你必须经历一个冗长而烦琐的准备阶段,这一部分通常称为分析引论。引论内容抽象、概念繁杂而具体结果较少,因而缺少吸引力,致使通常的教材尽可能作简化处理。本章也不打算将引论作得详尽无遗;但对于构成分析逻辑基础的基本要素,绝对必须有一个清晰的交代,这不仅为学习数学分析所必需,而且也是逐步适应现代数学理论的构造模式的必经之路。


图书封面

图书标签Tags

广告

下载页面


数学分析原理与方法 PDF格式下载



相关图书