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O 0000 DO O In this method.the fluid flow through a chamber 8urface coated with a cellmonolayer iS used to
study response of cells to fluid flow[] a cellular probe iSused to measure this response.Several cell types such as
vascular endothe-lial cells and osteocytes are physiologically exposed to fluid flow and shearstress.Cells sense these
external forces and react accordingly this process iscrucial for many regulatory processes.For example

[ endothelial surface layerhas multifaceted physiological functions and behaves as a transport barrier(] as a porous
hydrodynamic interface in the motion of red and white cells inmicrovesselsC] and as a mechanotransducer of fluid
shearing stresses to theactin cortical cytoskeleton of the endothelial cell. Endothelial cells adoptan elongated shape
in the flow direction if they are subjected to a shear flow.A similar situation exists for osteocytes in bone where
mechanosensing con-trols bone repair and adaptive restructuring processes.It iS believed thatstrain.derived flow of
interstitial fluid through lacuno-canalicular porositymechanically activates the osteocytes. There are three
candidates stimulat-ing cellsC] wall shear stress.streaming potentials.and chemotransport.Controlling the wall shear
stress and measuring its effect on fluid transport.bone cell nitric oxide[J and prostaglandin production can be used
to study thenature of the flow-derived cell stimuli.Fluid shear stress rate iS also animportant parameter for bone cell
activation.
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