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0000 OO0 Itisnotimmediately obvious that choosing A to be a low-degree algebraic inte-ger should
help our search for dynamical self-similarity [ beyond the restriction that it places on the denominator of the
rotation number[] . Of course, it is well known that the lowest-degree algebraic integers, solutions of quadratic
equations, enjoy algebraic self-similarity in their continued.fraction expansions. Moreover, for one-dimensional
maps analogous to piecewise isometries, namely the interval exchange transformations, one has a powerful theorem
of Boshernitzan and Carroll [0 19970 es-tablishing their renormalizability for quadratic irrational parameters.
Unfortunately,no comparable theorem for two-dimensional PWI's has been proved. However, for
two-dimensional PWI's, the renormalizability of an important class of models with quadratic irrational A has been
rigorously established by Kouptsov et al. [1 200200 us-ing computer assisted proofs. It is here that the true
advantage of the restriction to low-degree algebraic numbers makes itself felt: it makes it possible to use com-puter
software to perform exact calculations on specific models, most of which have exceedingly complicated multi-level
return map structures, thereby verifying impor-tant properties of each model and, by exhaustion, the entire class.
Before examining three particularly interesting models from the class of PWI's of the square with rational rotation
numbers and quadratic irrational parameters, it will be useful to illustrate how the systematic search for
renormalizable return map structure succeeds in a particularly simple example. The contrast with the A = 1/2 case
will be striking.
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