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OO0O00O OO0 Thus, whilearbitrary functions H (x) which vanish over portions of the relevantdomain are
not useful in the homotopy analysis method, one has the option to employ such functions provided they only
vanish over a set of measure zero. One maylook at this in another way. In the homotopy given in (3.22), we
introduce the newauxiliary operator (3.23) which depends on 1/H (x). If we do the same here, we seethat if H (x)
vanishes over a set of measure zero, then the auxiliary linear operatorconstructed via (3.23) will have singularities at
all members of this set of measurezero. Such singularities greatly complicate the problem of solving the linear
operator to obtain the terms gm (x) in the mth order deformation equations. In practice,these vanishing auxiliary
functions will modify the particular solutions obtainedwhen solving for the gm (X)'S, which may complicate the
recursive solution process.As such, it is usually best to avoid auxiliary functions H (x) which vanish at anypoint
over the domain of the problem, unless one has a good reason to use them. Yet, if we are to avoid all such H (x)
which vanish over any portion of the domain, we can just as well elect to solve the modified homotopy (3.22) using
themodified auxiliary linear operator (3.23). This is why, in many cases, one simplytakes H (x) = 1 and then
attempts to obtain the appropriate initial guess and auxiliary linear operator. In those cases where a different, yet
nonvanishing auxiliaryfunction is used, one may simply modify the auxiliary linear operator to arrive atthe same
results (i.e., the same series solutions). However, one should point out that the solution expression is determined
by thechoice of auxiliary linear operator, L, the initial approximation and the functionH (x). When one does not
know, a priori, the expression of solution, then one cansimply choose H (x) = 1. However, we should point out
that simple and elegant solutions may be obtained in many cases by properly choosing an appropriate
functionalform for H (x) = 1. 3.3 Selection of the convergence control parameter The convergence control
parameter, h # 0, was introduced by Liao in order to control the manner of convergence in the series solutions
obtained via homotopy analysis. As a consequence, once the initial approximation, auxiliary linear operator,and
auxiliary function are selected, the homotopy analysis method still provides onewith a family of solutions,
dependent upon the convergence control parameter. Sincewe are free to select a member of this family as the
approximate solution to a nonlinear equation, we find that the convergence region and the convergence rate of
theseries solutions obtained via the homotopy analysis method depend on the convergence control parameter. As a
consequence, we are free to enhance the convergenceregion and the convergence rate of a series solution via an
appropriate choice of theconvergence control parameter h even for fixed choices of the initial
approximation,auxiliary linear operator, and auxiliary function. Such a property makes the homotopy analysis
method unique among analytical techniques and provides us with avery powerful tool to study nonlinear
differential equations.
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