随机过程导论
2003-1
机械工业出版社
[美] 考
438
无
随机过程是对随时间和空间变化的随机现象进行建模和分析的学科。许多年前,我们不能在现实问题求解中应用随机过程,但随着数值方法和计算工具的快速发展,这种状况已经发生了变化。本书很好地将计算机的使用和随机过程教学结合起来,采用MATLAB的计算机解题方法,使本书充满现代感,又具备实用的特点。本书采用面向应用和计算的方式,强调通过各种示例和习题来开发学生在随机建模和分析中的实战能力,同时将计算的任务交给计算机去完成。 本书是为那些有兴趣学习随机过程的概念、模型和计算方法的学生编写的,是随机过程课程的入门教材,适合管理、金融、工程、统计、计算机科学和应用数学等专业的高年级本科生或低年级研究生阅读
1 Introduction 1 1.0 Overview 2 1.1 Introduction 2 1.2 Discrete Random Variables and Generating Functions 6 1.3 Continuous Random Variables and Laplace Transforms 17 1.4 Some Mathematical Background 28 Problems 37 Bibliographic Notes 42 References 43 Appendix 432 Poisson Processes 47 2.0 Overview 47 2.1 Introduction 48 2.2 Properties of Poisson Processes 51 2.3 Nonhomogeneous Poisson Processes 56 2.4 Compound Poisson Processes 72 2.5 Filtered Poisson Processes 76 2.6 Two-Dimensional and Marked Poisson Processes 80 2.1 Poisson Arrivals See Time Averages (PASTA) 83 Problems 87 Bibliographic Notes 93 References 94 Appendix 953 Renewal Processes 97 3.0 Overview 97 3.1 Introduction 98 3.2 Renewal-Type Equations 101 3.3 Excess Life, Current Life, and Total Life 107 3.4 Renewal Reward Processes 118 3.5 Limiting Theorems, Stationary and Transient Renewal Processes 128 3.6 Regenerative Processes 132 3.7 Discrete Renewal Processes 144 Problems 146 Bibliographic Notes 154 References 155 Appendix 1564 Discrete-Time Markov Chains 160 4.0 Overview 160 4.1 Introduction 161 4.2 Classification of States 167 4.3 Ergodic and Periodic Markov Chains 175 4.4 Absorbing Markov Chains 188 4.5 Markov Reward Processes 203 4.6 Reversible Discrete-Tune Markov Chains 207 Problems 212 Bibliographic Notes 225 References 226 Appendix 2275 Continuous-Time Markov Chains 238 5.0 Overview 239 5.1 Introduction 239 5.2 The Kolmogorov Differential Equations 245 5.3 The Limiting Probabilities 252 5.4 Absorbing Continuous-Time Markov Chains 256 5.S Phase-Type Distributions 264 5.6 Uniformization 273 5.7 Continuous-Time Markov Reward Processes 277 5.8 Reversible Continuous-Time Markov Chains 284 Problems 298 Bibliographic Notes 313 References 314 Appendix 3166 Markov Renewal and Semi-Regenerative Processes 321 6.0 Overview 322 6.1 Introduction 322 6.2 Markov Renewal Functions and Equations 331 6.3 Semi-Markov Processes and Related Reward Processes 339 6.4 Semi-Regenerative Processes 348 Problems 363 Bibliographic Notes 367 References 367 Appendix 3687 Brownian Motion and Other Diffusion Processes 373 7.0 Overview 373 7.1 Introduction 374 7.2 Diffusion Processes 385 7.3 Ito's Calculus and Stochastic Differential Equations 396 7.4 Multidimensional Ito's Lemma 404 7.5 Control of Systems of Stochastic Differential Equations 409 Problems 417 Bibliographic Notes 419 References 420 Appendix 421 Appendix: Getting Started with MATLAB 427 Index 436
本书是为那些有兴趣学习随机过程的概念、模型和计算方法的学生编写的,是随机过程课程的入门教材,适合管理、金融、工程、统计、计算机科学和应用数学等专业的高年级本科生或低年级研究生阅读。本书采用面向应用和计算的方式,强调通过各种示例和习题来开发学生在随机建模和分析中的实战能力,同时将计算的任务交给计算机去完成。
无
有丰富的例子,是十分不错的教材!
尽管有点难,但是听经典的!!!
速度有点慢,但总体上还算说的过去!
店主我想问一下,我定货已经快一个礼拜了为什么还没收到呢
网上订教材,回馈是2月26日发货,今天3月5日还没有影子。我究竟要等多久?