0000 O, tushu007.com
<«<O000000ds>>

gobooo

iid<<pgoggooog>>
1300 ISBNUO O 0 9787111265269
1000 ISBNO O 10 7111265262

0 dodogo2009-3
gooooboooogooao

O O O Stephen R.Schach

0 0O 0558

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000 0O, tushu007.com
<«<O000000ds>>

gd

The wheel has turned full circle.In 1988, | wrote a textbook entitled Software Engineering. Virtually the only
mention of the object-oriented paradigm in that book was one section that described object-oriented design.By
1994, the object-oriented paradigm was starting to gain acceptance in the software industry, so | wrote a textbook
called Classical and Object-Oriented Software Engineering. Six years later, however, the object-oriented paradigm
had become more important than the classical paradigm. To reflect this change,| switched the order of the two
topics in the title of the textbook I wrote in 2000,and called it Object-Oriented and Classical Software
Engineering.Nowadays, use of the classical paradigm is largely restricted to maintaining legacy software. Students
learn C++ or Java as their first programming language,and object-oriented languages are used in subsequent
computer science and computer engineering courses. Students expect that, when they graduate, they will work for a
company that uses the object-oriented paradigm. The object-oriented paradigm has all but squeezed out the
classical paradigm. And that is why | have written a textbook entitled Object-Oriented Software Engineering.

Page 2

0000 O, tushu007.com
<«<O000000ds>>

goon

gobobobbbougoooobbbobbodgg
gobbobbbuoogooobbbobbuoooogobbobbooooooobobbooog

goboboboboboodggd
gogobbbbbougoogobbobbboooooobobbooooooobobobboad

gooooooo

Page 3

0000 O, tushu007.com
<«<O000000ds>>

goon

O0000O0OStephenR.SchachD 19720 0 00000000000 OOOODO193D 0D 0ODOOOO

goobooooo

gobbobbbudgoogobobbodago
gobboobbbudoooobbobbbuooogobboobbuoooooon
gobboobbbougooooboooo

Page 4

0000 0O, tushu007.com
<O0d00ooods>

good

PARTONE INTRODUCTION TO OBJECT-ORIENTED SOFTWARE ENGINEERING | O Chapter | The
Scope of object-Oriented Software Engineering [0 0 00 O O O O 1.1 Historical Aspects 1.2 Economic Aspects
[0 1.3 Maintenance Aspectsl] 1.3.1 The Modern View of Maintenance 91 1.3.2 The Importance of
Post-delivery Maintenance 1.4 Requirements.Analysis.and Design AspectsC] 1.5 Team Development Aspects[]
1.6 Why There Is No Planning Phasel] 1.7 Why There Is No Testing Phase[] 1.8 Why There Is No
Documentation Phase[] 1.9 The Obiect-Oriented Paradigmd 1.10 Terminologyd 1.11 Ethical Issues

[0 Chapter Review[l For Further Readingll] Key Terms [0 [0 [Referencest] Chapter 2 Software Life.Cycle
Models 00 00 0O OO [O02.1 Software Development in Theoryd 2.2 Winburg Mini Case Study[] 2.3 Lessons of
the Winburg Mini Case Study(l 2.4 Teal Tractors Mini Case Study[l 2.5 Iteration and Incrementationd] 2.6
Winburg Mini Case Study Revisited[] 2.7 Risks and Other Aspects of Iteration and Incrementationd] 2.8
Managing Iteration and IncrementationJ 2.9 Other Life—Cycle Models 2.9.1 Code.and.Fix Life-Cycle Model
2.9.2 Waterfatf Life-Cycle Modef 2.9.3 Rapid-Prototyping Life-cycle Modef 50 2.9.4 Open-Source Life-Cyle
Model 2.9.5 Agile Processes 2.96 Synchronize.and.Stabilize Life-Cycle Model 2.9.7 Spiraf Life-Cycle
Modef 2.10 Comparison of Life—Cycle Models Chapter Review For Further Reading Key Terms [[
References] Chapter 3 The Software Process [J [0 O O [0 [0 3.1 The Unified Process[] 3.2 Iteration and
Incrementation] 3.3 The Requirements Wbrkflowd 3.4 The Analysis workflowJ] 3.S The Design Workflow
[0 3.6 The Implementation Workflowd 3.7 The Test Workflow 7800 3.7.1 Requirements ArtfactsL] 3.7.2
Analysis ArtifactsL] 3.7.3 Design ArtifactsC] 3.7.4 Implementation Artifactst] 3.8 Postdelivery Maintenance
[0 3.9 Retirement[] 3.10 The Phases of the Unifled ProcessC] 3.10.1 The Inception Phasel1 3.10.2 The
Elaboration Phasel] 3.10.3 The Construction Phase[] 3.10.4 The Transition Phase[J 3.11 One-versus
Tw0.Dimensional Life-Cycle Modelsl] 3.12 Improving the Software Process[] 3.13 Capability Maturity Models
00O 0O OPART TWO THE WORKFLOWS OF THE SOFTWARE LIFE CYCLE

Page 5

0000 0O, tushu007.com
<O0d00ooods>

good

As explained in Section 3.13, without measurements [J or metrics[] it is impossible to dettect problems early in the
software process, before they get out of hand. In this way, metrics can serve as an early warning system for potential
problems. A wide variety of metrics can be used. For example, lines of code [0 LOCO is one way of measuring the
size of a product [see Section 9.2.101 . If LOC measurements are taken at regular intervals, they provide a measure
of how fast the project is progressing. In addition, the number of faults per 1000 lines of code is a measure of
software quality. After all, it is of little use if a programmer consistently turns out 2000 lines of code a month but half
of them have to be thrown away because they are unacceptable. Accordingly, LOC in isolation is not a very
meaningful metric.Once the product has been installed on the client's computer, a metric such as mean time
between failures provides management an indication of its reliability. If a certain product fails every other day, its
quality is clearly lower than that of a similar product that on average runs for 9 months without a failure.Certain
metrics can be applied throughout the software process. For example, for each workflow, we can measure the effort
in person-months O | person-month is the-amount of work done by one person in 1 monthO . Staff turnover is
another important metric. High turnover adversely affects current projects because it takes time for a new employee
to learn the relevant facts about the project [J see Section 4.1 . In addition, new employees may have to be trained
in aspects of the software process; if new employees are less educated in software engineering than the individuals
they replace, then the process as a whole may suffer. Of course, cost is an essential metric that must also be
monitored continually throughout the entire process.A number of different metrics are described in this book.
Some are product metrics;they measure some aspect of the product itself, such as its size or its reliability. Others are
process metrics used by the developers to deduce information about the software process. A typical metric of this
kind is the efficiency of fault detection during development,that is, the ratio of the number of faults detected during
development to the total number of faults detected in the product over its lifetime.

Page 6

0000 0O, tushu007.com
<«<O000000ds>>

goon

Ooooooooo@oo)yhooooooooobooooooooooo.oooooooooa
000000000000 00O000O0000000.O0000000000b000O000O0000
O

Oo0ooooooo@oOo)y ooooooooobooooooooooboooooooooo
000000000000 00000b0O

000000000000 00O000O000ooO0boooboo

000000000000 000

0000000000000 00b00o00ooCcCASEIDOOOOOn
ogoooooooooococmvmOooooooooooop- cMMOOOOO

Oo00o0o0oon

OooooO0C++0val D OO0O0OO0OO0OO0OO0O

e D O0OO0OOO0OOOOO0OO0OOOOOOOOOO
0020000000000000000000007MO0O000O000O000O000O0O00O0O0O00O
O

O000000WvaOC++0 000000000000 0www.mhhe.com/schach O O O
OOs50000000

000000000000 00000000000000o0n

Page 7

0000 O, tushu007.com
<«<O000000ds>>

goon

gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

