固态电子器件
2007-2
人民邮电出版社
(美)Ben G. Stree
581
720000
无
本书是介绍半导体器件工作原理的经典入门教材,其主要内容包括固体物理基础和半导体器件物理两大部分,同时也涵盖半导体晶体结构与材料生长技术、集成电路原理与制造工艺以及光电子器件与高频大功率器件等相关内容。 本书注重基本物理概念,强调理论联系实际,可作为高等院校电子信息类专业“固态器件与电路”专业基础课的教材,也可供相关领域的研究人员和技术人员参考。
Ben G.Streetman是美国国家工程院院士和美国艺术与科学院院士,IEEE会士和美国电化学学会(ECS)会士。现任美国得克萨斯大学奥斯汀分校工学院院长和该鹇电机工程与计算机工程讲座教授,也是该校微电子研究中心的创始人和第一任主任(1984年-1996年)。Streetman教授的教
1 CRYSTAL PROPERTIES AND GROWTH OF SEMICONDUCTORS 1.1 Semiconductor Materials 1.2 Crystal Lattices 1.2.1 Periodic Structures 1.2.2 Cubic Lattices 1.2.3 Planes and Directions 1.2.4 The Diamond Lattice 1.3 BulkCrystalGrowth 1.3.1 Starting Materials 1.3.2 Growth of Single-Crystal Ingots 1.3.3 Wafers 1.3.4 Doping 1.4 Epitaxial Growth 1.4.1 Lattice-Matching in Epitaxial Growth 1.4.2 Vapor-Phase Epitaxy 1.4.3 Molecular Beam Epitaxy 2 ATOMS AND ELECTRONS 2.1 Introduction to Physical Models 2.2 Experimental Observations 2.2.1 The Photoelectric Effect Atom i Spectra 2.3 The Bohr Modlel 2.4 Quantum Mechanics 2.4.1 Probability and the Uncertainty Principle 2.4.2 The Schr6dinger Wave Equation 2.4.3 PotentialWellProblem 2.4.4 Tunneling 2.5 Atomic Structure and the Periodic lable 2.5.1 The Hydrogen Atom 2.5.2 The Periodic Table 3 ENERGY BANDS AND CHARGE CARRIERS IN SEMICONDUCTORS 3.1 Bonding Forces and Energy Bands in Solids 3.1.1 Bonding Forces in Solids 3.1.2 Energy Bands 3.1.3 Metals, Semiconductors, and Insulators 3.1.4 Direct and Indirect Semiconductors 3.1.5 Variation o! Energy Bands with AIIo Composition 3.2 Charge Carriers Semiconductors 3.2.1 Electrons and Holes 3.2.2 Effective Mass 3.2.3 Intrinsic Material 3.2.4 Extrinsic Material 3.2.5 Electrons and Holes in Quantum Wells 3.3 Carrier Concentrations 3.3.1 TheFermiLevel 3.3.2 Electron and Hole Concentrations at Equilibrium 3.3.3 Temperature Dependence of Carrier Concentrations 3.3.4 Compensation and Space Charge Neutrality 3.4 Drift of Carriers in Electric and Magnetic Fields 3.4.1 Conductivity and Mobility' 3.4.2 Drift and Resistance 3.4.3 Effects of lemperature and Doping on Mobility' 3.4.4 High-Field Effects 3.4 5 The Hall Effect 3.5 Invariance of the Fermi Level at Equilibrium EXCESS CARRIERS IN SEMICONDUCTORS 4.1 Optical Absorption 4.2 Luminescence 4.2.1 Photoluminescence 4.2.2 Electroluminescence 4.3 Carrier Lifetime and Photoconductivity 4.3.1 Direct Recombination of Electrons and Holes 4.3.2 Indirect Recombination; Trapping 4.3.3 Steady State Carrier Generation; Quasi-Fermi Levels 4.3 4 Photoconductive Devices 4.4 Diffusion of Carriers 4.4.1 Diffusion Processes 4.4.2 Diffusion and Drift of Carriers; Built-in Fields 4.4.3 Diffusion and Recombination; The Continuity Equation 4.4.4 Steady State Carrier Injection; Diffusion Length 4.4.5 The Haynes-Shockley Experiment 4.4.6 Gradients in the Quasi-Fermi Levels 5 JUNCTIONS 5.1 Fabrication of p-n Junctions 5.1.1 Thermal Oxidation 5.1.2 Diffusion 5.1.3 Rapid Thermal Processing 5.1.4 Ion Implantation 5.1.5 Chemical Vapor Deposition (CVD) 5.1.6 Photolithography 5.1.7 Etching 5.1.8 Metallization 5.2 Equilibrium Conditions 5.2.1 The Contact Potential 5.2.2 Equilibrium Fermi Levels 5.2.3 Space Charge at a Junction 5.3 Forward-and Reverse-Biased Junctions;Steady State Conditions 5.3.1 Qualitative Description of Current Flow at a Junction 5.3.2 Carrier Injection 5.3.3 Reverse Bias 5.4 Reverse-Bias Breakdown 5.4.1 Zener Breakdown 5.4.2 Avalanche Breakdown 5.4.3 Rectifiers 5.4.4 The Breakdown Diode 5.5 Transient and A-C Conditions 5.5.1 Time Variation of Stored Charge 5.5.2 Reverse Recovery Transient 5.5.3 Switching Diodes 5.5.4 Capacitance of p-n junctions 5.5.5 The Varactor Diode 5.6 Deviations from the Simpl Theory 5.6.1 Effects of Contact Potential on Carrier Injection 5.6.2 Recombination and Generation in the Transition Region 5.6.3 Ohmic Losses 5.6.4 Graded Junctions 5.7 Metal-Semiconductor Junctions 5.7.1 Schottky Barriers 5.7.2 Rectifying Contacts 5.7.3 Ohmic Contacts 5.7.4 lypical Schottky Barriers 5.8 Heterojunctions 6 FIELD-EFFECT TRANSISTORS 6.1 Transistor Operation 6.1.1 The Load Line 6.1.2 Amplification a4d Switching 6.2 The Junction FET 6.2.1 Pinch-off and Saturation 6.2.2 Gate Control 6.2.3 Current-VoltageCharacteristics 6.3 The MetaI-SemiconductorFET 6.3.1 The GaAs MESFET 6.3.2 The High Electron Mobility Transistor (HEMT) 6.3.3 Short Channel Effects 6.4 The Metal-Insulator-Semiconductor FET 6.4.1 Basic Operation and Fabrication 6.4.2 The Ideal MOS Capacitor 6.4.3 Effects of Real Surfaces 6.4.4 ThresholdVoltage 6.4.5 MOS Capacitance-Voltage Analysis 6.4.6 Time-Dependent Capacitance Measurements 6.4.7 Current-Voltage Characteristics of MOS Gate Oxides 6.5 The MOSField-EffectTrans~stor 6.5.1 Output Characteristics 6.5.2 Transfer Characteristics 6.5.3 Mobility Models 6.5.4 Short Channel MOSFET I-V Characteristics 6.5.5 Control of Threshold Voltage 6.5.6 Substrate Bias Effects 6.5.7 Subthreshold Characteristics 6.5.8 Equivalent Circuit for the MOSFET 6.5.9 MOSFET Scaling and Hot Electron Effects 6.5.10 Drain-induced Barrier Lowering 6.5.11 Short Channel Effect and Narrow Width Effect 6.5.12 Gate-Induced Drain Leakage 7 BIPOLAR JUNCTION TRANSISTORS 7.1 Fundamentals o! BJT Operation 7.2 Amplification with BJTs 7.3 BJTFabrication 7.4 Minority Carrier Distributions and Terminal Currents 7.4.1 Solution of the Diffusion Equation in the Base Region 7.4.2 Evaluation of the Terminal Currents 7.4.3 Approximations of the Terminal Currents 7.4.4 Current Transfer Ratio 7.5 Generalized Biasing 7.5.1 The Coupled-Diode Model 7.5.2 Charge Control Analysis 7.6 Switching 7.6.1 Cutoff 7.6.2 Saturation 7.6.3 The Switching Cycle 7.6.4 Specifications for Switching Transistors 7.7 Other Important Effects 7.7.1 Drift in the Base Region 7.7.2 Base Narrowing 7.7.3 Avalanche Breakdown 7.7.4 Injection Level; Thermal Effects 7.7.5 Base Resistance and Emitter Crowding 7.7.6 GummeI-Poon Model 7.7 7 Kirk Effect 7.8 Frequency Limitations of Transistors 7.8.1 Capacitance and Charging Times 7.8.2 Transit Time Effects 7.8.3 Webster Effect 7.8.4 High-Frequency Transistors 7.9 Heterojunction polar Transistors 8 OPTOELECTRONIC DEVICES 8.1 Photodiodes 8.1.1 Current and Voltage in an Illuminated Junction 8.1.2 SolarCells 8.1.3 Photodetectors 8.1.4 Gain, Bandwidth, and Signal-to-Noise Ratio of Photodetectors 8.2 Light-Emitting Diodes 8.2.1 Light-Emitting Materials 8.2.2 Fiber-Optic Communications 8.3 Lasers 8.4 Semiconductor Lasers 8.4.1 Population Inversion at a Junction 8.4.2 Emission Spectra for p-n Junction Lasers 8.4.3 The Basic Semiconductor Laser 8.4.4 Heterojunction Lasers 8.4.5 Materials for Semiconductor Lasers 9 INTEGRATED CIRCUITS 9.1 Background 9.1.1 Advantages of Integration 9.1.2 Types of Integrated Circuits 9.2 Evolution oflntegrated Circuits 9.3 Monolithic Device Elements 9.3.1 CMOS Process Integration 9.3.2 Silicon-on-Insulator (SOl) 9.3.3 Integration of O.ther Circuit Elements 9.4 arge Transfer Devices 9.4.1 Dynamic Effects in MOS Capacitors 9.4.2 The Basic CCD 9.4.3 Improvements on the Basic Structure 9.4.4 App_lications of CCDs 9.5 Ultra LargeScalelntegration(ULSI) 9.5.1 Logic Devices 9.5.2 Semiconductor Memories 9.6 resting, Bonding, and Packaging 9.6.1 Testing 9.6.2 Wire Bonding 9.6.3 Flip-Chip Techniques 9.6.4 Packaging 1O HIGH-FREQuENCY AND HIGH-POWER DEVICES 10.1 Tunnel Diodes 10.1.1 Degenerate Semiconductors 10.2 The IMPATT Diode 10.3 The Gunn Diode 10.3.1 The Transferred-Electron Mechanism 10.3.2 Formation and Drift of Space Charge Domains 10.4 The p-n-p-n Diode 10.4.1 Basic Structure 10.4.2 The Two-Transistor Analogy 10.4.3 Variation of α with Injection 10.4.4 Forward-Blocking State 10.4.5 ConductingState 524 10.4.6 Triggering Mechanisms 10.5 The Semiconductor-Controlle rectifier 10.5.1 Turning off the SCR 10.6 Insulated-Gate Bipolar Transistor APPENDICES Ⅰ. Definitions of Commonly Used Symbols Ⅱ. Physical Constants and Conversion Factors Ⅲ. Properties of Semiconductor Materials Ⅳ. Derivation of the Density of States in the Conduction Band Ⅴ. Derivation of Fermi-Dirac Statistics Ⅵ. Dry and Wet Thermal Oxide Thickness Grown on Si(100) as a Function of Time and. lemperature Ⅶ. Solid Solubilities of Impurities in Ⅶ. Diffusivities of Dopants in Si and SiO2 Ⅸ. Projected Range and Straggle as Function of Implant Energy in Si ANSWERS TO SELECTED SELF QUIZ QUESTIONS INDEX
无
还不错,送的很快,第二天就送到了,书的质量也不错
bestbookindevice
凑巧我手里有一本从美国买来的原版.原版的图更加清晰,色彩鲜艳.到了影印以后,都成了黑白灰了.文字是很好的.内容很值得学半导体器件的好好钻研
还好,能看懂。
首先这本书的装订不怎么样,甚至连边都没有切齐。其次内容太少,非常不全面,如蜻蜓点水,讲得“太基本”了,真不愧是一本“经典入门教材”!本以为工程院院士会写出一本全面而应用性很强的教材,但我觉得事实上谈实用的器件极少,,书名也许叫固态电子器件基础更合适!当然,本书虽然对我不太有用,但我不反对对其他读者有用。对入门者或想将基础夯实者可能是一本非常好的教材。