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Pattern recognition has a long and respectable history within engineer-ing, especially for military applications, but
the cost of the hardwareboth to acquire the data I signals and images[] and to compute theanswers made it for
many years a rather specialist subject. Hardwareadvances have made the concerns of pattern recognition of much
widerapplicability. In essence it covers the following problem:'Given some examples of complex signals and the
correctdecisions for them, make decisions automatically for a streamof future examples.'There are many examples
from everyday life:Name the species of a flowering plant.Grade bacon rashers from a visual image.Classify an X-ray
image of a tumour as cancerous or benign.Decide to buy or sell a stock option.Give or refuse credit to a
shopper.Many of these are currently performed by human experts, but it isincreasingly becoming feasible to design
automated systems to replacethe expert and either perform better [J as in credit scoring] or ‘clone’ theexpert ] as
in aids to medical diagnosisC] .Neural networks have arisen from analogies with models of the waythat humans
might approach pattern recognition tasks, although theyhave developed a long way from the biological roots. Great
claims havebeen made for these procedures, and although few of these claims havewithstood careful scrutiny,
neural network methods have had greatimpact on pattern recognition practice. A theoretical understanding ofhow
they work is still under construction, and is attempted here byviewing neural networks within a statistical
framework, together withmethods developed in the field of machine learning.One of the aims of this book is to be a
reference resource, so almostall the results used are proved [ and the remainder are given referencesto complete
proofs[] . The proofs are often original.
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[0 O O The calculations here are from Hjort [ 1986[1 ; versions of these for-mulae are given by Aitchison &
Dunsmore [0 19750 [ up to the differencesin the meaning of their multivariate t0 and Geisser [1 1993[1 . This
ap-proach is originally due to Geisser [1 1964, 196601 . The differences between the predictive and plug-in
approaches willbe small or zero for roughly equally prevalent classes. In other cases,for example screening for rare
diseases or when very few data areavailable, the differences can be dramatic as shown by the examples inAitchison
& Dunsmore [0 1975, 11.5-11.600 . The latter do have groupswith nk only slightly greater than p, for example p =8
and n2 = 11when fitting a covariance matrix to each class, which would be seenas over-fitting in the plug-in
approach. [ Indeed, one might choose notto use all the variables, or perhaps to restrict the class of
covariancematrices considered.[] Aitchison et al. (1 197700 conducted a small-sample simulation compar-ison of
the plug-in and predictive methods for two multivariate normalpopulations. They were [ correctly(] criticized by
Moran & Murphy 197900 for using the accuracy of the estimation of the log=odds as thebasis of comparison
rather than error rates, and for including mainlyequal sample sizes of the two classes. Moran & Murphy's results
showvery little difference in the error rates, and show that for estimationof the log-odds the debiasing methods of
Section 2.5 are effective inremoving the dramatic optimism of the plug-in method where it occurs.
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