数字信号处理
2007-8
电子工业
蔡坤宝
392
无
《数字信号处理(英文版)》系统地阐述了数字信号处理所涉及的信号与系统分析和系统设计的基本理论、基本分析与设计方法、基本算法和处理技术。全书共10章,主要内容包括:离散时间信号与系统的基本概念,离散时间信号与系统的变换域分析,包括z变换和离散时间傅里叶变换、连续时间信号的抽样与重建,离散傅里叶变换及其快速算法(FFT),数字滤波器实现的基本结构,IIR和FIR 数字滤波器的设计原理与基本设计方法,数字信号处理中的有限字长效应,多抽样率数字信号处理。《数字信号处理(英文版)》配有多媒体电子课件、英文版教学大纲、习题指导与实验手册。 《数字信号处理(英文版)》可以作为电子与通信相关专业的本科数字信号处理课程中英文双语教学的教材,或中文授课的英文版教学参考书,也可供从事数字信号处理的工程技术人员学习参考。本书尤其适合初步开展数字信号处理课程中英文双语授课的教师与学生选用。
蔡坤宝,博士,重庆大学通信工程学院教授,信号与信息处理硕士学位点负责人。多年来致力于随机信号的产生与处理、生物组织粘弹性波动的有限元分析、现代信号处理及其应用和人工神经网络等方面的研究工作。十余年来,积极探索和实施中英文双语教学,现任重庆市级精品课程“信号与线性系统”的负责人,并参加重庆大学精品课程“数字信号处理”的建设工作。
1 Introduction1.1 What Is a Signal?1.2 What Is a System?1.3 What Is Signal Processing?1.4 Classification of Signals1.4.1 Deterministic and Random Signals1.4.2 Continuous-Time and Discrete-Time Signals1.4.3 Periodic Signals and Nonperiodic Signals1.4.4 Energy Signals and Power Signals1.5 Overview of Digital Signal Processing2 Discrete-Time Signals and Systems2.1 Discrete-Time Signals: Sequences2.1.1 Operation on Sequences2.2 Basic Sequences2.2.1 Some Basic Sequences2.2.2 Periodicity of Sequences2.2.3 Representation of Arbitrary Sequences2.3 Discrete-Time systems2.3.1 Classification of Discrete-Time systems2.4 Time-Domain Representations of LTI Systems2.4.1 The Linear Convolution Sum2.4.2 Interconnections of LTI Systems2.4.3 Stability Condition of LTI systems2.4.4 Causality Condition of LTI systems2.4.5 Causal and Anticausal Sequences2.5 Linear Constant-Coefficient Difference Equations2.5.1 Recursive Solution of Difference Equations2.5.2 Classical Solution of Difference Equations2.5.3 Zero-Input Response and Zero-State Response2.5.4 The Impulse Response of Causal LTI Systems2.5.5 Recursive Solution of Impulse Responses2.5.6 Classification of LTI Discrete-Time SystemsProblems3 Transform-Domain Analysis of Discrete-Time Signals and Systems3.1 The z-Transform3.1.1 Definition of the z-Transform3.1.2 A General Shape of the Region of Convergence3.1.3 Uniqueness of the z-Transform3.2 Relation Between the ROCs and Sequence Types3.3 The z-Transform of Basic Sequences3.4 The Inverse z-Transform3.4.1 Contour Integral Method3.4.2 Partial Fraction Expansion Method3.4.3 Long Division Method3.4.4 Power Series Expansion Method3.5 Properties of the z-Transform3.6 The Discrete-Time Fourier Transform3.6.1 Definition of the Discrete-Time Fourier Transform3.6.2 Convergence Criteria3.6.3 Properties of the Discrete-Time Fourier Transform3.6.4 Symmetry Properties of the Discrete-Time Fourier Transform3.7 Transform-Domain Analysis of LTI Discrete-Time Systems3.7.1 The Frequency Response of Systems3.7.2 The Transfer Function of LTI Systems3.7.3 Geometric Evaluation of the Frequency Response3.8 Sampling of Continuous-Time Signals3.8.1 Periodic Sampling3.8.2 Reconstruction of Bandlimited Signals3.9 Relations of the z-Transform to the Laplace TransformProblems4 The Discrete Fourier,Transform4.1 The Discrete Fourier Series4.2 Properties of the Discrete Fourier Series4.2.1 Evaluation of the Periodic Convolution Sum4.3 The Discrete Fourier Transform4.4 Properties of the Discrete Fourier Transform4.4.1 Circular Convolution Theorems4.5 Linear Convolutions Evaluated by the Circular Convolution4.6 Linear Time-Invariant Systems Implemented by the DFT4.7 Sampling and Reconstruction in the z-Domain4.8 Fourier Analysis of Continuous-Time Signals Using the DFT4.8.1 Fourier Analysis of Nonperiodic Continuous-Time Signals4.8.2 Practical Considerations4.8.3 Spectral Analysis of Sinusoidal SignalsProblems5 Fast Fourier Transform Algorithms5.1 Direct Computation and Efficiency Improvement of the DFT5.2 Decimation-in-Time FFT Algorithm with Radix-25.2.1 Butterfly-Branch Transmittance of the Decimation-in-Time FFT5.2.2 In-Place Computations5.3 Decimation-in-Frequency FFT Algorithm with Radix-25.4 Computational Method of the Inverse FFTProblems6 Digital Filtor Structures6.1 Description of the Digital Filter Structures6.2 Basic Structures for I1R Digital Filters6.2.1 Direct Form6.2.2 Direct Form6.2.3 Cascade Form6.2.4 Parallel Form6.3 Basic Structures for FIR Digital Filters6.3.1 Direct Forms6.3.2 Cascade Forms6.3.3 Linear-Phase Forms6.3.4 Frequency Sampling FormProblems7 Design Techniques of Digital IIR Filters7.1 Preliminary Considerations7.1.1 Frequency Response of Digital Filters7.2 Discrete-Time Systems Characterized by Phase Properties7.3 Allpass Systems7.3.1 Nonminimum-Phase Systems Represented by a Cascade Connection7.3.2 Group Delay of the Minimum-Phase Systems7.3.3 Energy Delay of the Minimum-Phase Systems7.4 Analog-to-Digital Filter Transformations7.4.1 Impulse Invariance Transformation7.4.2 Step Invariance Transformation7.4.3 Bilinear Transformation7.5 Design of Analog Prototype Filters7.5.1 Analog Butterworth Lowpass Filters7.5.2 Analog Chebyshev Lowpass Filters7.6 Design of Lowpass IIR Digital Filters7.6.1 Design of Lowpass Digital Filters Using the Impulse Invariance7.6.2 Design of Lowpass Digital Filters Using the Bilinear Transformation7.7 Design of IIR Digital Filters Using Analog Frequency Transformations7.7.1 Design of Bandpass IIR Digital Filters7.7.2 Design of Bandstop I]R Digital Filters7.7.3 Design of Highpass IIR Digital Filters7.8 Design of IIR Digital Filters Using Digital Frequency Transformations7.8.1 Lowpass-to-Lowpass Transformation7.8.2 Lowpass-to-Highpass Transformation7.8.3 Lowpass-to-Bandpass Transformation7.8.4 Lowpass-to-Bandstop TransformationProblems8 Design of FIR Digital Filters8.1 Properties of Linear Phase FIR Filters8.1.1 The Impulse Response of Linear-Phase FIR Filters8.1.2 The Frequency Response of Linear-Phase FIR Filters8.1.3 Characteristics of Amplitude Functions8.1.4 Constraints on Zero Locations8.2 Design of Linear-Phase FIR Filters Using Windows8.2.1 Basic Techniques8.2.2 Window Functions8.2.3 Design of Linear-Phase FIR Lowpass Filters Using Windows8.2.4 Design of Linear-Phase FIR Bandpass Filters Using Windows8.2.5 Design of Linear-Phase FIR Highpass Filters Using Windows8.2.6 Design of Linear-Phase FIR Bandstop Filters Using WindowsProblems9 Finite-Wordlength Effects in Digital Signal Processing9.1 Binary Number Representation with its Quantization Errors9.1.1 Fixed-Point Binary Representation of Numbers9.1.2 Floating-Point Representation9.1.3 Errors from Truncation and Rounding v9.1.4 Statistical Model of the Quantization Errors9.2 Analysis of the Quantization Errors in A/D Conversion9.2.1 Statistical Model of the Quantization Errors9.2.2 Transmission of the Quantization Noise through LTI Systems9.3 Coefficient Quantization Effects in Digital Filters9.3.1 Coefficient Quantization Effects in IIR Digital Filters9.3.2 Statistical Analysis of Coefficient Quantization Effects9.3.3 Coefficient Quantization Effects in FIR Filters9.4 Round-off Effects in Digital Filters9.4.1 Round-off Effects in Fixed-Point Realizations of ILR Filters9.4.2 Dynamic Range Scaling in Fixed-Point Implementations of IIR Filters9.5 Limit-Cycle Oscillations in Realizations of IIR Digital Filters9.5.1 Zero-Input Limit Cycle Oscillations9.5.2 Limit Cycles Due to Overflow9.6 Round-off Errors in FFT Algorithms9.6.1 Round-off Errors in the Direct DFT Computation9.6.2 Round-off Errors in Fixed-point FFT RealizationProblems10 Multirate Digital Signal Processing10.1 Sampling Rate Changed by an Integer Factor10.1.1 Downsampling with an Integer Factor M10.1.2 Decimation by an Integer Factor M10.1.3 Upsampling with an Integer Factor L10.1.4 Interpolation by an Integer Factor L10.2 Sampling Rate Conversion by a Rational Factor10.3 Efficient Structures for Sampling Rate Conversion10.3.1 Equivalent Cascade Structures10.3.2 Polyphase Decompositions10.3.3 Polyphase Realization of Decimation Filters10.3.4 Polyphase Realization of Interpolation FiltersProblemsAppendix A Tables for the z-TransformAppendix B Table for Properties of the Discrete-Time Fourier TransformAppendix C Table for Properties of the Discrete Fourier SeriesAppendix D Table for Properties of the Discrete Fourier TransformAppendix E Table for the Normalized Butterworth Lowpass FiltersAppendix F Answers To Partial ProblemsReferences
无