<<电工基础与实践>>

图书基本信息

书名: <<电工基础与实践>>

13位ISBN编号: 9787121137549

10位ISBN编号:7121137542

出版时间:2011-6

出版时间:电子工业出版社

作者:王学屯 等编著

页数:222

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<电工基础与实践>>

内容概要

《电工基础与实践》是中职类学校的有关电子电气类专业技术基础课教材。

《电工基础与实践》以讲解电工基本概念、基本理论为主,适当联系后继课程和生产实际,内容包括电路的基本知识、简单直流电路、复杂直流电路、电容器、磁场与电磁感应、单相正弦交流电路、三相交流电路。

《电工基础与实践》可作为中等职业技术学校电类专业通用教材,也可作为农村电工、相关技能培训班、家电售后维修人员的培训和自学用书。

<<电工基础与实践>>

书籍目录

第1章电路的基本知识
第一节电流
一、电流的种类 二、电流的大小 三、电流的方向
二、电流的大小
二中这的全向
二、电加引力问
第二节电路
一、电路及组成
二、电路图
三、电路的状态
第三节电位与电压
一 由位
一、电位 二、电压(电位差)
实训一万用表的使用与电流、电压的测量
一、万用表的使用 二、电流与电压的测量 三、实训练习
一由弦片中区的测量
一、 电加匀电压的测量
二、头训练习
第四节电动势
一、电源力
二、电动势
三、电动势与路端电压的关系
第五节电阻与电导
一、电阻 二、电阻定律 三、电阻率
_一 、电阻定律
三、电阻率
四、电阻率与温度的关系
五、电导
第六节欧姆定律
一、部分电路欧姆定律
一、部分电路欧姆定律 二、伏安特性曲线 三、全电路欧姆定律
二、全电路欧姆定律
四、电源的外特性
实训二电阻的测量
大师一七四时》
一、用万用表测量电阻 二、用伏安法测量电阻 三、实训练习
二、用伏安法测量电阻
三、实训练习
第七节电功与电功率
一、电切
一、电功 二、电功率 三、功率的参考方向
三、功率的参考方向
四、电流的热效应
五、电气设备的额定值
课后练习

第2章简单直流电路 第一节串联电路

一、电阻串联电路

<<电工基础与实践>>

二、电池的串联
第二节并联电路
一、电阻并联电路
二、电池的并联
第三节混联电路
一、电阻混联电路
二、电池的混联
一、电池的战场 第四节电源的功率及负载获得最大功率的条件
一、电源的功率
二、负载获得最大功率的条件
第五节电路中电位和电压的计算
一、电路中各点电位的计算
二、电路中两点间电压的计算
实训三电位与电压的测量
一、测量原理
二、实训练习
课后练习
第3章复杂直流电路
第一节基尔霍夫定律
一、名词术语
二、基尔霍夫第一定律(kcl定律)
三、基尔霍夫第二定律(kvl定律)
实训四基尔霍夫定律验证
一、实训目的
二、实训练习
第二节支路电流法
第三节叠加原理
第四节戴维南定理
实训五戴维南定理的验证
一、实训目的
二、实训练习
第五节电压源、电流源及其等效变换
一、电压源
二、电流源
二、 <i>电加源</i> 三、电压源与电流源的等效变换
二、 ^{电压} 减
一、直流电桥电路
一、且加电价电路 一、方法中场中级的亚条条件
二、直流电桥电路的平衡条件
三、直流电桥电路应用举例
课后练习
第4章电容器
第一节电容器与电容量
一、电容器

一、电容器的充电

三、电容器的主要性能指标 第二节电容器的充电和放电过程

二、电容量

<<电工基础与实践>>

- 二、电容器的放电
- 三、电容器充、放电的特点

第三节电容器的连接

- 一、电容器的串联
- 二、电容器的并联
- 三、电容器的混联 三、电容器的混联

第四节电容器的种类和选用

- 一、电容器的种类
- 二、电容器的选用

实训六电容器的简易检测

- 一、实训目的
- 、实训原理
- 三、实训练习

课后练习

第5章磁场与电磁感应

第一节磁的基本知识

- 一、磁体与磁极
- 二、磁场与磁感线
- 三、电流的磁场

第二节磁场的主要物理量

- 一、磁通量
- 、磁感应强度
- 三、磁导率
- 四、磁场强度

第三节磁场对通电导体的作用

- 一、磁场对通电直导体的作用
- 二、磁场对通电矩形线框的作用

第四节铁磁材料及其磁性能

- 一、铁磁物质的磁化
- 、磁化曲线
- 三、磁滞回线
- 四、铁磁材料的分类

第五节电磁感应

- 一、电磁感应现象 二、法拉第电磁感应定律
- 三、楞次定律

四、直导体中感应电动势大小和方向的确定

实训七楞次定律验证

- 一、实训目的
- 二、实训原理
- 三、实训练习

第六节自感现象

- 一、自感现象的产生
- 二、自感系数
- 三、自感电动势
- 四、电感线圈中的磁场能量
- 五、自感现象的应用与危害

<<电工基础与实践>>

第七节互感现象

- 一、互感现象的产生
- 二、互感系数与互感电动势
- 三、互感线圈的同名端
- 四、互感现象的应用与危害

第八节涡流

- 一、涡流
- 二、涡流的应用与危害
- 第九节磁路与磁路欧姆定律
 - 一、磁路
 - 二、磁路欧姆定律
 - 三、电磁铁
 - 课后练习

第6章单相正弦交流电路

- 第一节交流电的基本概念
 - 一、交流电
 - 二、正弦电动势的产生
- 第二节表征交流电的基本物理量
 - 一、交流电的瞬时值与最大值
 - 二、交流电的周期、频率、角频率
 - 三、交流电的相位与相位差
 - 四、交流电的有效值与平均值
 - 实训八常用电子仪器的使用
 - 一、实训目的
 - 二、低频信号发生器的使用
 - 三、示波器的使用
 - 四、实训练习

第三节正弦交流电的表示方法

- 一、解析式表示法
- 二、波形图表示法
- 三、相量图表示法
- *四、符号法

第四节具有单一参数元件的单相交流电路

- 一、纯电阻电路
- 二、纯电感电路
- 三、纯电容电路

第五节串联交流电路

- 一、r-I-c串联电路
- 二、r-l串联电路
- 三、r-c串联电路

第六节并联交流电路

- 一、r-l-c并联电路
- 二、实际线圈和电容器的并联电路
- 实训九单相交流电路
- 一、实训目的
- 二、实训练习
- 实训十日光灯电路安装与功率因数的增大

<<电工基础与实践>>

- 一、实训目的 二、单相功率表的使用
- 三、实训练习

第七节谐振电路

- 一、串联谐振电路
- 二、并联谐振电路
- 实训十一r-I-c串联谐振电路
- 一、实训目的
- 二、实训练习
- *第八节用符号法求解正弦交流电路
- 一、电阻、感抗和容抗的复数表示
- 、串联电路和并联电路的复阻抗表示形式
- 三、用符号法求解正弦交流电路

课后练习

第7章三相交流电路

- 第一节三相交流电源
 - 一、三相交流电动势的产生
 - 二、三相交流电源绕组的连接
- 第二节三相负载的连接

 - 一、三相负载的星形连接 二、三相负载的三角形连接
- 第三节三相交流电路的功率
- 第四节安全用电的基本知识
 - 一、触电对人体的伤害
 - 二、触电的原因和方式
 - 三、常用的安全用电防护措施
 - 四、安全用电注意事项
 - 实训十二三相负载的连接
 - 一、实训目的
 - .、实训练习

课后练习

参考文献

<<电工基础与实践>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com