<<数据库系统>>

图书基本信息

书名: <<数据库系统>>

13位ISBN编号:9787121149962

10位ISBN编号:7121149966

出版时间:2012-1

出版时间:电子工业出版社

作者:(英)康诺利,(英)贝格 著

页数:1124

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<数据库系统>>

前言

Background The history of database research over the past 30 years is one of exceptional productivity that has led to the database system becoming arguably the most important development in the field of software engineering. The database is now the underlying framework of the information system and has fundamentally changed the way many organizations operate. In particular, the developments in this technology over the last few years have produced systems that are more powerful and more intuitive to use. This development has resulted in increasing availability of database systems for a wider variety of users. Unfortunately, the apparent simplicity of these systems has led to users creating databases and applications without the necessary knowledge to produce an effective and efficient system. And so the software crisis?or, as it is sometimes referred to, the software depression?continues. The original stimulus for this book came from the authors?work in industry, providing consultancy on database design for new software systems or, as often as not, resolving inadequacies with existing systems. In addition, the authors?move to academia brought similar problems from different users students. The objectives of this book, therefore, are to provide a textbook that introduces the theory behind databases as clearly as possible and, in particular, to provide a methodology for database design that can be used by both technical and nontechnical readers. The methodology presented in this book for relational Database Management Systems (DBMSs) the predominant system for business applications at present has been tried and tested over the years in both industrial and academic environments. It consists of three main phases: conceptual, logical, and physical database design. The first phase starts with the production of a conceptual data model that is independent of all physical considerations. This model is then refined in the second phase into a logical data model by removing constructs that cannot be represented in relational systems. In the third phase, the logical data model is translated into a physical design for the target DBMS. The physical design phase considers the storage structures and access methods required for efficient and secure access to the database on secondary storage. The methodology in each phase is presented as a series of steps. For the inexperienced designer, it is expected that the steps will be followed in the order described, and guidelines are provided throughout to help with this process. For the experienced designer, the methodology can be less prescriptive, acting more as a framework or checklist. To help the reader use the methodology and understand the important issues, the methodology has been described using a realistic worked example, based on an integrated case study, DreamHome. In addition, three additional case studies are provided in Appendix B to allow readers to try out the methodology for themselves. Modeling Language) Increasingly, companies are standardizing the way in which they model data by selecting a particular approach to data modeling and using it throughout their database development projects. A popular high-level data model used in conceptual/logical database design, and the one we use in this book, is based on the concepts of the Entity-Relationship (ER) model. Currently there is no standard notation for an ER model. Most books that cover database design for relational DBMSs tend to use one of two conventional notations: Chen notation, consisting of rectangles representing entities and diamonds representing relationships, with lines linking the rectangles and diamonds; or Crow Feet notation, again consisting of rectangles representing entities and lines between entities representing relationships, with a crow調 foot at one end of a line representing a one-to-many relationship. ……

<<数据库系统>>

内容概要

本书是数据库领域的经典著作,内容系统全面,实用性强,被世界多所大学选为数据库相关课程的教材。

全书主要内容有:数据库系统和数据库设计的基本知识;关系模型和关系语言;数据库分析和设计的主要技术;数据库设计方法学;数据库安全、事务管理、查询处理与优化;分布式DBMS与数据复制技术;面向对象数据库技术;DBMS与Web技术的结合,半结构化数据与XML;与商务智能有关的一些日益重要的技术,包括数据仓库、联机分析处理和数据挖掘以及数据库架构等。

<<数据库系统>>

作者简介

作者:(英国)康诺利 (Thomas M.Connolly) (英国)贝格 (Carolyn E.Begg)

<<数据库系统>>

书籍目录

\sim	4 -	4 -
Co	nto	ntc
	1115	

PART 1 Background

CHAPTER 1 Introduction to Databases 2

- 1.1 Introduction 3
- 1.2 Traditional File-Based Systems 5
- 1.2.1 File-Based Approach 5
- 1.2.2 Limitations of the File-Based Approach 10
- 1.3 Database Approach 12
- 1.3.1 The Database 12
- 1.3.2 The Database Management System (DBMS) 13
- 1.3.3 (Database) Application Programs 14
- 1.3.4 Components of the DBMS Environment 16
- 1.3.5 Database Design: The Paradigm Shift 18
- 1.4 Roles in the Database Environment 18
- 1.4.1 Data and Database Administrators 19
- 1.4.2 Database Designers 19
- 1.4.3 Application Developers 20
- 1.4.4 End-Users 20
- 1.5 History of Database Management Systems 20
- 1.6 Advantages and Disadvantages of DBMSs 23

Chapter Summary 27

Review Questions 28

Exercises 28

CHAPTER 2 Database Environment 30

- 2.1 The Three-Level ANSI-SPARC Architecture 31
- 2.1.1 External Level 32
- 2.1.2 Conceptual Level 32
- 2.1.3 Internal Level 32
- 2.1.4 Schemas, Mappings, and Instances 33
- 2.1.5 Data Independence 34
- 2.2 Database Languages 35
- 2.2.1 The Data Definition Language (DDL) 35
- 2.2.2 The Data Manipulation Language (DML) 36
- 2.2.3 Fourth-Generation Languages (4GLs) 37
- 2.3 Data Models and Conceptual Modeling 38
- 2.3.1 Object-Based Data Models 39
- 2.3.2 Record-Based Data Models 39
- 2.3.3 Physical Data Models 42
- 2.3.4 Conceptual Modeling 42
- 2.4 Functions of a DBMS 42

Chapter Summary 46

Review Questions 47

Exercises 47

CHAPTER 3 Database Architectures and the Web 49

3.1 Multi-user DBMS Architectures 49

<<数据库系统>>

3.1.1 Tel	eprocessing	50
-----------	-------------	----

- 3.1.2 File-Server Architecture 50
- 3.1.3 Traditional Two-Tier Client-Server Architecture 51
- 3.1.4 Three-Tier Client-Server Architecture 53
- 3.1.5 N-Tier Architectures 55
- 3.1.6 Middleware 56
- 3.1.7 Transaction Processing Monitors 58
- 3.2 Web Services and Service-Oriented Architectures 59
- 3.2.1 Web Services 59
- 3.2.2 Service-Oriented Architectures (SOA) 60
- 3.3 Distributed DBMSs 62
- 3.4 Data Warehousing 64
- 3.5 Components of a DBMS 66
- 3.6 Oracle Architecture 69
- 3.6.1 Oracle誷 Logical Database Structure 69
- 3.6.2 Oracle誷 Physical Database Structure 71

Chapter Summary 74

Review Questions 75

Exercises 75

PART 2 The Relational Model and Languages

CHAPTER 4 The Relational Model 78

- 4.1 Brief History of the Relational Model 79
- 4.2 Terminology 80
- 4.2.1 Relational Data Structure 80
- 4.2.2 Mathematical Relations 82
- 4.2.3 Database Relations 83
- 4.2.4 Properties of Relations 84
- 4.2.5 Relational Keys 85
- 4.2.6 Representing Relational Database Schemas 86
- 4.3 Integrity Constraints 88
- 4.3.1 Nulls 88
- 4.3.2 Entity Integrity 88
- 4.3.3 Referential Integrity 89
- 4.3.4 General Constraints 89
- 4.4 Views 90
- 4.4.1 Terminology 90
- 4.4.2 Purpose of Views 90
- 4.4.3 Updating Views 91

Chapter Summary 91

Review Questions 92

Exercises 92

CHAPTER 5 Relational Algebra and Relational Calculus 94

- 5.1 The Relational Algebra 95
- 5.1.1 Unary Operations 96
- 5.1.2 Set Operations 97
- 5.1.3 Join Operations 100
- 5.1.4 Division Operation 103

<<数据库系统>>

	5.	1.	5	Aggr	egatio	า and	Grou	ping	0	perations	103
--	----	----	---	------	--------	-------	------	------	---	-----------	-----

- 5.1.6 Summary of the Relational Algebra Operations 105
- 5.2 The Relational Calculus 106
- 5.2.1 Tuple Relational Calculus 106
- 5.2.2 Domain Relational Calculus 109
- 5.3 Other Languages 111

Chapter Summary 111

Review Questions 112

Exercises 112

CHAPTER 6 SQL: Data Manipulation 115

- 6.1 Introduction to SQL 116
- 6.1.1 Objectives of SQL 116
- 6.1.2 History of SQL 117
- 6.1.3 Importance of SQL 118
- 6.1.4 Terminology 119
- 6.2 Writing SQL Commands 119
- 6.3 Data Manipulation 120
- 6.3.1 Simple Queries 120
- 6.3.2 Sorting Results (ORDER BY Clause) 127
- 6.3.3 Using the SQL Aggregate Functions 128
- 6.3.4 Grouping Results (GROUP BY Clause) 130
- 6.3.5 Subqueries 133
- 6.3.6 ANY and ALL 135
- 6.3.7 Multi-table Queries 136
- 6.3.8 EXISTS and NOT EXISTS 141
- 6.3.9 Combining Result Tables (UNION, INTERSECT, EXCEPT) 142
- 6.3.10 Database Updates 144

Chapter Summary 148

Review Questions 149

Exercises 149

CHAPTER 7 SQL: Data Definition 151

- 7.1 The ISO SQL Data Types 152
- 7.1.1 SQL Identifiers 152
- 7.1.2 SQL Scalar Data Types 152
- 7.1.3 Exact Numeric Data 153
- 7.2 Integrity Enhancement Feature 156
- 7.2.1 Required Data 156
- 7.2.2 Domain Constraints 156
- 7.2.3 Entity Integrity 157
- 7.2.4 Referential Integrity 158
- 7.2.5 General Constraints 159
- 7.3 Data Definition 159
- 7.3.1 Creating a Database 160
- 7.3.2 Creating a Table (CREATE TABLE) 160
- 7.3.3 Changing a Table Definition (ALTER TABLE) 163
- 7.3.4 Removing a Table (DROP TABLE) 164
- 7.3.5 Creating an Index (CREATE INDEX) 165

<<数据库系统>>

7.3.6 Removing an Index (DROP INDEX) 16

- 7.4 Views 166
- 7.4.1 Creating a View (CREATE VIEW) 166
- 7.4.2 Removing a View (DROP VIEW) 168
- 7.4.3 View Resolution 169
- 7.4.4 Restrictions on Views 170
- 7.4.5 View Updatability 170
- 7.4.6 WITH CHECK OPTION 171
- 7.4.7 Advantages and Disadvantages of Views 172
- 7.4.8 View Materialization 174
- 7.5 Transactions 175
- 7.5.1 Immediate and Deferred Integrity Constraints 176
- 7.6 Discretionary Access Control 176
- 7.6.1 Granting Privileges to Other Users (GRANT) 177
- 7.6.2 Revoking Privileges from Users (REVOKE) 179

Chapter Summary 180

Review Questions 181

Exercises 181

CHAPTER 8 Advanced SQL 184

- 8.1 The SQL Programming Language 184
- 8.1.1 Declarations 185
- 8.1.2 Assignments 186
- 8.1.3 Control Statements 186
- 8.1.4 Exceptions in PL/SQL 188
- 8.1.5 Cursors in PL/SQL 189
- ${\bf 8.2\ Subprograms}, {\bf Stored\ Procedures}, {\bf Functions}, {\bf and\ Packages}$
- 8.3 Triggers 193
- 8.4 Recursion 198
- Chapter Summary 199

Review Questions 200

Exercises 200

CHAPTER 9 Query-By-Example 202

- 9.1 Introduction to Microsoft Office Access Queries 203
- 9.2 Building Select Queries Using QBE 204
- 9.2.1 Specifying Criteria 205
- 9.2.2 Creating Multi-table Queries 207
- 9.2.3 Calculating Totals 208
- 9.3 Using Advanced Queries 210
- 9.3.1 Parameter Query 210
- 9.3.2 Crosstab Query 211
- 9.3.3 Find Duplicates Query 213
- 9.3.4 Find Unmatched Query 213
- 9.3.5 Autolookup Query 214
- 9.4 Changing the Content of Tables Using Action Queries 215
- 9.4.1 Make-Table Action Query 215
- 9.4.2 Delete Action Query 217

<<数据库系统>>

9.4.3 Update Action	Query	217
---------------------	-------	-----

9.4.4 Append Action Query 218

Exercises 220

PART 3 Database Analysis and Design

CHAPTER 10 Database System Development Lifecycle 222

10.1 The Information Systems Lifecycle 223

10.2 The Database System Development Lifecycle 223

10.3 Database Planning 224

10.4 System Definition 226

10.4.1 User Views 226

10.5 Requirements Collection and Analysis 226

10.5.1 Centralized Approach 228

10.5.2 View Integration Approach 228

10.6 Database Design 230

10.6.1 Approaches to Database Design 230

10.6.2 Data Modeling 230

10.6.3 Phases of Database Design 231

10.7 DBMS Selection 233

10.7.1 Selecting the DBMS 234

10.8 Application Design 236

10.8.1 Transaction Design 237

10.8.2 User Interface Design Guidelines 238

10.9 Prototyping 239

10.10 Implementation 240

10.11 Data Conversion and Loading 240

10.12 Testing 241

10.13 Operational Maintenance 241

10.14 CASE Tools 242

Chapter Summary 244

Review Questions 245

Exercises 245

CHAPTER 11 Database Analysis and the DreamHome Case Study 247

11.1 When Are Fact-Finding Techniques Used? 248

11.2 What Facts Are Collected? 248

11.3 Fact-Finding Techniques 249

11.3.1 Examining Documentation 249

11.3.2 Interviewing 250

11.3.3 Observing the Enterprise in Operation 250

11.3.4 Research 251

11.3.5 Questionnaires 251

11.4 Using Fact-Finding Techniques: A Worked Example 252

11.4.1 The DreamHome Case Study—An Overview of the Current System

11.4.2 The DreamHome Case Study—Database Planning 255

11.4.3 The DreamHome Case Study—System Definition 260

11.4.4 The DreamHome Case Study—Requirements Collection and

Analysis 261

<<数据库系统>>

11.4.5 The DreamHome (Case Study	√—Database	Design 268
------------------------	------------	------------	------------

Chapter Summary 268

Review Questions 268

Exercises 269

CHAPTER 12 Entity-Relationship Modeling 270

12.1 Entity Types 272

12.2 Relationship Types 272

12.2.1 Degree of Relationship Type 274

12.2.2 Recursive Relationship 275

12.3 Attributes 276

12.3.1 Simple and Composite Attributes 277

12.3.2 Single-valued and Multi-valued Attributes 277

12.3.3 Derived Attributes 277

12.3.4 Keys 278

12.4 Strong and Weak Entity Types 279

12.5 Attributes on Relationships 280

12.6 Structural Constraints 281

12.6.1 One-to-One (1:1) Relationships 281

12.6.2 One-to-Many (1:*) Relationships 282

12.6.3 Many-to-Many (*:*) Relationships 283

12.6.4 Multiplicity for Complex Relationships 284

12.6.5 Cardinality and Participation Constraints 285

12.7 Problems with ER Models 286

12.7.1 Fan Traps 287

12.7.2 Chasm Traps 288

Chapter Summary 289

Review Questions 290

Exercises 291

CHAPTER 13 Enhanced Entity-Relationship Modeling 293

13.1 Specialization/Generalization 294

13.1.1 Superclasses and Subclasses 294

13.1.2 Superclass/Subclass Relationships 294

13.1.3 Attribute Inheritance 295

13.1.4 Specialization Process 296

13.1.5 Generalization Process 296

13.1.6 Constraints on Specialization/Generalization 298

13.1.7 Worked Example of using Specialization/Generalization

to

Model the Branch View of the DreamHome Case Study 299

13.2 Aggregation 303

13.3 Composition 303

Chapter Summary 304

Review Questions 305

Exercises 305

CHAPTER 14 Normalization 306

14.1 The Purpose of Normalization 307

14.2 How Normalization Supports Database Design 307

<<数据库系统>>

14.3.1 Insertion Anomalies 309

14.3.2 Deletion Anomalies 309

14.3.3 Modification Anomalies 310

14.4 Functional Dependencies 310

14.4.1 Characteristics of Functional Dependencies 310

14.4.2 Identifying Functional Dependencies 314

14.4.3 Identifying the Primary Key for a Relation Using Functional

Dependencies 316

14.5 The Process of Normalization 317

14.6 First Normal Form (1NF) 318

14.7 Second Normal Form (2NF) 322

14.8 Third Normal Form (3NF) 323

14.9 General Definitions of 2NF and 3NF 325

Chapter Summary 326

Review Questions 326

Exercises 327

CHAPTER 15 Advanced Normalization 329

15.1 More on Functional Dependencies 330

15.1.1 Inference Rules for Functional Dependencies 330

15.1.2 Minimal Sets of Functional Dependencies 331

15.2 Boyce-Codd Normal Form (BCNF) 332

15.2.1 Definition of BCNF 332

15.3 Review of Normalization Up to BCNF 335

15.4 Fourth Normal Form (4NF) 340

15.4.1 Multi-Valued Dependency 340

15.4.2 Definition of Fourth Normal Form 341

15.5 Fifth Normal Form (5NF) 341

15.5.1 Lossless-Join Dependency 341

15.5.2 Definition of Fifth Normal Form 342

Chapter Summary 343

Review Questions 343

Exercises 344

PART 4 Methodology

CHAPTER 16 Methodology—Conceptual Database Design 346

16.1 Introduction to the Database Design Methodology 347

16.1.1 What Is a Design Methodology? 347

16.1.2 Conceptual, Logical, and Physical Database Design 347

16.1.3 Critical Success Factors in Database Design 348

16.2 Overview of the Database Design Methodology 348

16.3 Conceptual Database Design Methodology 350

Step 1: Build Conceptual Data Model 350

Chapter Summary 363

Review Questions 364

Exercises 364

CHAPTER 17 Methodology袻ogical Database Design for the Relational

Model 366

<<数据库系统>>

17.1 Logical Database Design Methodology for the Relational Model

366

Step 2: Build Logical Data Model 367

Chapter Summary 390

Review Questions 390

Exercises 391

CHAPTER 18 Methodology裀hysical Database Design for Relational

Databases 393

18.1 Comparison of Logical and Physical Database Design 394

18.2 Overview of the Physical Database Design Methodology 394

18.3 The Physical Database Design Methodology for Relational

Databases 395

Step 3: Translate Logical Data Model for Target DBMS 396

Step 4: Transactions 400

Step 5: Design User Views 410

Step 6: Design Security Mechanisms 411

Chapter Summary 411

Review Questions 412

Exercises 412

CHAPTER 19 Methodology袽onitoring and Tuning the Operational System

111

19.1 Denormalizing and Introducing Controlled Redundancy 414

Step 7: Consider the Introduction of Controlled Redundancy

414

19.2 Monitoring the System to Improve Performance 424

Step 8: Monitor and Tune the Operational System 424

Chapter Summary 428

Review Questions 428

Exercises 428

PART 5 Selected Database Issues

CHAPTER 20 Security and Administration 430

20.1 Database Security 430

20.1.1 Threats 431

20.2 Countermeasures-Computer-Based Controls 433

20.2.1 Authorization 434

20.2.2 Access Controls 435

20.2.3 Views 437

20.2.4 Backup and Recovery 437

20.2.5 Integrity 438

20.2.6 Encryption 438

20.2.7 RAID (Redundant Array of Independent Disks) 439

20.3 Security in Microsoft Office Access DBMS 441

20.4 Security in Oracle DBMS 443

20.5 DBMSs and Web Security 446

20.5.1 Proxy Servers 447

20.5.2 Firewalls 447

20.5.3 Message Digest Algorithms and Digital Signatures 448

<<数据库系统>>

20.5.4 Digital Certificates 448	20.5.4	Digital	Certificates	448
---------------------------------	--------	---------	--------------	-----

20.5.5 Kerberos 449

20.5.6 Secure Sockets Layer and Secure HTTP 449

20.5.7 Secure Electronic Transactions and Secure Transaction

Technology 450

20.5.8 Java Security 450

20.5.9 ActiveX Security 453

20.6 Data Administration and Database Administration 453

20.6.1 Data Administration 453

20.6.2 Database Administration 454

20.6.3 Comparison of Data and Database Administration 454

Chapter Summary 455

Review Questions 456

Exercises 456

CHAPTER 21 Professional, Legal, and Ethical Issues in Data

Management 457

21.1 Defining Legal and Ethical Issues in IT 457

21.1.1 Defining Ethics in the Context of IT 458

21.1.2 The Difference Between Ethical and Legal Behavior 458

21.1.3 Ethical Behavior in IT 459

21.2 Legislation and Its Impact on the IT Function 460

21.2.1 Securities and Exchange Commission (SEC) Regulation National

Market System (NMS) 460

21.2.2 The Sarbanes-Oxley Act, COBIT, and COSO 460

21.2.3 The Health Insurance Portability and Accountability Act

461

21.2.4 The European Union (EU) Directive on Data Protection of 1995 462

21.2.5 The United Kingdom調 Data Protection Act of 1998 463

21.2.6 International Banking袯asel II Accords 463

21.3 Establishing a Culture of Legal and Ethical Data Stewardship 464

21.3.1 Developing an Organization-Wide Policy for Legal and Ethical Behavior 464

21.3.2 Professional Organizations and Codes of Ethics 465

21.3.3 Developing an Organization-Wide Policy for Legal and Ethical

Behavior for DreamHome 468

21.4 Intellectual Property 469

21.4.1 Patent 469

21.4.2 Copyright 469

21.4.3 Trademark 470

21.4.4 Intellectual Property Rights Issues for Software 470

21.4.5 Intellectual Property Rights Issues for Data 472

Chapter Summary 472

Review Questions 473

Exercises 473

CHAPTER 22 Transaction Management 474

<<数据库系统>>

R - S) 551

22.1 Transaction Support 475
22.1.1 Properties of Transactions 477
22.1.2 Database Architecture 477
22.2 Concurrency Control 478
22.2.1 The Need for Concurrency Control 478
22.2.2 Serializability and Recoverability 480
22.2.3 Locking Methods 487
22.2.4 Deadlock 492
22.2.5 Timestamping Methods 495
22.2.6 Multiversion Timestamp Ordering 498
22.2.7 Optimistic Techniques 499
22.2.8 Granularity of Data Items 500
22.3 Database Recovery 502
22.3.1 The Need for Recovery 503
22.3.2 Transactions and Recovery 503
22.3.3 Recovery Facilities 506
22.3.4 Recovery Techniques 508
22.3.5 Recovery in a Distributed DBMS 510
22.4 Advanced Transaction Models 510
22.4.1 Nested Transaction Model 512
22.4.2 Sagas 513
22.4.3 Multilevel Transaction Model 514
22.4.4 Dynamic Restructuring 515
22.4.5 Workflow Models 516
22.5 Concurrency Control and Recovery in Oracle 517
22.5.1 Oracle誷 Isolation Levels 517
22.5.2 Multiversion Read Consistency 517
22.5.3 Deadlock Detection 519
22.5.4 Backup and Recovery 519
Chapter Summary 521
Review Questions 522
Exercises 523
CHAP TER 23 Query Processing 525
23.1 Overview of Query Processing 526
23.2 Query Decomposition 529
23.3 Heuristical Approach to Query Optimization 532
23.3.1 Transformation Rules for the Relational Algebra Operations
532
23.3.2 Heuristical Processing Strategies 535
23.4 Cost Estimation for the Relational Algebra Operations 537
23.4.1 Database Statistics 537
23.4.2 Selection Operation (S = $sp(R)$) 538
23.4.3 Join Operation (T = (R S)) 544 23.4.4 Projection Operation (S = A1, A2,, Am(R)) 549
23.4.5 The Relational Algebra Set Operations ($T = R S$, $T = R S$, $T = R S$).

<<数据库系统>>

23.5 Enumeration of Alternative Execution Strategies 55	23.5	Enumeration	of Alternative	Execution	Strategies 552
---	------	-------------	----------------	-----------	----------------

- 23.5.1 Pipelining 552
- 23.5.2 Linear Trees 553
- 23.5.3 Physical Operators and Execution Strategies 554
- 23.5.4 Reducing the Search Space 555
- 23.5.5 Enumerating Left-Deep Trees 555
- 23.5.6 Semantic Query Optimization 557
- 23.5.7 Alternative Approaches to Query Optimization 557
- 23.5.8 Distributed Query Optimization 558
- 23.6 Query Optimization in Oracle 558
- 23.6.1 Rule-Based and Cost-Based Optimization 559
- 23.6.2 Histograms 561
- 23.6.3 Viewing the Execution Plan 563

Chapter Summary 564

Review Questions 565

Exercises 566

PART 6 Distributed DBMSs and Replication

CHAPTER 24 Distributed DBMSs—Concepts and Design 570

- 24.1 Introduction 571
- 24.1.1 Concepts 571
- 24.1.2 Advantages and Disadvantages of DDBMSs 575
- 24.1.3 Homogeneous and Heterogeneous DDBMSs 577
- 24.2 Overview of Networking 580
- 24.3 Functions and Architectures of a DDBMS 583
- 24.3.1 Functions of a DDBMS 583
- 24.3.2 Reference Architecture for a DDBMS 583
- 24.3.3 Reference Architecture for a Federated MDBS 584
- 24.3.4 Component Architecture for a DDBMS 585
- 24.4 Distributed Relational Database Design 586
- 24.4.1 Data Allocation 587
- 24.4.2 Fragmentation 588
- 24.5 Transparencies in a DDBMS 595
- 24.5.1 Distribution Transparency 595
- 24.5.2 Transaction Transparency 597
- 24.5.3 Performance Transparency 600
- 24.5.4 DBMS Transparency 602
- 24.5.5 Summary of Transparencies in a DDBMS 602
- 24.6 Date誷 Twelve Rules for a DDBMS 603

Chapter Summary 604

Review Questions 605

Exercises 606

CHAPTER 25 Distributed DBMSs—Advanced Concepts 608

- 25.1 Distributed Transaction Management 609
- 25.2 Distributed Concurrency Control 610
- 25.2.1 Objectives 610
- 25.2.2 Distributed Serializability 610
- 25.2.3 Locking Protocols 611

<<数据库系统>>

25.2.4	Timestamp	Protocol	s 613
20.2.4	I IIIIEStailip	FIULUCUI	งบเง

25.3 Distributed Deadlock Management 613

25.4 Distributed Database Recovery 616

25.4.1 Failures in a Distributed Environment 616

25.4.2 How Failures Affect Recovery 617

25.4.3 Two-Phase Commit (2PC) 618

25.4.4 Three-Phase Commit (3PC) 623

25.4.5 Network Partitioning 626

25.5 The X/Open Distributed Transaction Processing Model 628

25.6 Distributed Query Optimization 630

25.6.1 Data Localization 631

25.6.2 Distributed Joins 634

25.6.3 Global Optimization 635

25.7 Distribution in Oracle 639

25.7.1 Oracle誷 DDBMS Functionality 639

Chapter Summary 643

Review Questions 644

Exercises 644

CHAPTER 26 Replication and Mobile Databases 646

26.1 Introduction to Data Replication 646

26.1.1 Synchronous Versus Asynchronous Replication 648

26.1.2 Applications of Replication 648

26.2 Replication Servers 649

26.2.1 Replication Server Functionality 649

26.2.2 Data Ownership 649

26.2.3 Implementation Issues 652

26.3 Introduction to Mobile Databases 655

26.3.1 Mobile DBMSs 656

26.3.2 Issues with Mobile DBMSs 657

26.4 Oracle Replication 661

26.4.1 Oracle誷 Replication Functionality 662

Chapter Summary 666

Review Questions 667

Exercises 667

PART 7 Object DBMSs

CHAPTER 27 Object-Oriented DBMSs—Concepts and Design 670

27.1 Advanced Database Applications 671

27.2 Weaknesses of RDBMSs 675

27.3 Storing Objects in a Relational Database 680

27.3.1 Mapping Classes to Relations 681

27.3.2 Accessing Objects in the Relational Database 682

27.4 Next-Generation Database Systems 683

27.5 Introduction to OODBMSs 684

27.5.1 Definition of Object-Oriented DBMSs 684

27.5.2 Functional Data Models 686

27.5.3 Persistent Programming Languages 690

27.5.4 The Object-Oriented Database System Manifesto 691

<<数据库系统>>

28.3.4 Data Manipulation in ObjectStore 763

Chapter Summary 766

<<数据库系统>>

	\sim			
Revie	MA/ ()	IDCTIO	nc	161
1/6/16	יש איי	มธงเเบ	เเจ	101

Exercises 767

CHAPTER 29 Object-Relational DBMSs 768

29.1 Introduction to Object-Relational Database Systems 769

29.2 The Third-Generation Database Manifestos 771

29.2.1 The Third-Generation Database System Manifesto 772

29.2.2 The Third Manifesto 772

29.3 Postgres—An Early ORDBMS 774

29.3.1 Objectives of Postgres 774

29.3.2 Abstract Data Types 775

29.3.3 Relations and Inheritance 775

29.3.4 Object Identity 776

29.4 SQL:2008 777

29.4.1 Row Types 778

29.4.2 User-Defined Types 778

29.4.3 Subtypes and Supertypes 781

29.4.4 User-Defined Routines 783

29.4.5 Polymorphism 784

29.4.6 Reference Types and Object Identity 785

29.4.7 Creating Tables 786

29.4.8 Querying Data 788

29.4.9 Collection Types 789

29.4.10 Typed Views 792

29.4.11 Persistent Stored Modules 793

29.4.12 Triggers 793

29.4.13 Large Objects 796

29.4.14 Recursion 797

29.5 Query Processing and Optimization 797

29.5.1 New Index Types 800

29.6 Object-Oriented Extensions in Oracle 801

29.6.1 User-Defined Data Types 801

29.6.2 Manipulating Object Tables 806

29.6.3 Object Views 807

29.6.4 Privileges 808

29.7 Comparison of ORDBMS and OODBMS 808

Chapter Summary 809

Review Questions 810

Exercises 810

PART 8 The Web and DBMSs

CHAPTER 30 Web Technology and DBMSs 812

30.1 Introduction to the Internet and the Web 813

30.1.1 Intranets and Extranets 814

30.1.2 e-Commerce and e-Business 815

30.2 The Web 816

30.2.1 HyperText Transfer Protocol 817

30.2.2 HyperText Markup Language 818

30.2.3 Uniform Resource Locators 819

<<数据库系统>>

30.2.4 Static and Dynamic Web Page	es 820
------------------------------------	--------

30.2.5 Web Services 821

30.2.6 Requirements for Web-DBMS Integration 822

30.2.7 Advantages and Disadvantages of the Web-DBMS Approach

822

30.2.8 Approaches to Integrating the Web and DBMSs 826

30.3 Scripting Languages 826

30.3.1 JavaScript and JScript 827

30.3.2 VBScript 828

30.3.3 Perl and PHP 828

30.4 Common Gateway Interface (CGI) 829

30.4.1 Passing Information to a CGI Script 830

30.4.2 Advantages and Disadvantages of CGI 831

30.5 HTTP Cookies 832

30.6 Extending the Web Server 833

30.6.1 Comparison of CGI and API 834

30.7 Java 835

30.7.1 JDBC 838

30.7.2 SQLJ 842

30.7.3 Comparison of JDBC and SQLJ 842

30.7.4 Container-Managed Persistence (CMP) 843

30.7.5 Java Data Objects (JDO) 846

30.7.6 JPA (Java Persistence API) 852

30.7.7 Java Servlets 859

30.7.8 JavaServer Pages 860

30.7.9 Java Web Services 860

30.8 Microsoft誷 Web Platform 862

30.8.1 Universal Data Access 863

30.8.2 Active Server Pages and ActiveX Data Objects 863

30.8.3 Remote Data Services 866

30.8.4 Comparison of ASP and JSP 867

30.8.5 Microsoft .NET 867

30.8.6 Microsoft Web Services 871

30.9 Oracle Internet Platform 872

30.9.1 Oracle Application Server (OracleAS) 872

Chapter Summary 877

Review Questions 878

Exercises 879

CHAPTER 31 Semistructured Data and XML 880

31.1 Semistructured Data 881

31.1.1 Object Exchange Model (OEM) 882

31.1.2 Lore and Lorel 883

31.2 Introduction to XML 886

31.2.1 Overview of XML 889

31.2.2 Document Type Definitions (DTDs) 891

31.3 XML-Related Technologies 893

31.3.1 DOM and SAX Interfaces 894

<<数据库系统>>

31.3.2 Namespaces 8	894
---------------------	-----

31.3.3 XSL and XSLT 895

31.3.4 XPath (XML Path Language) 896

31.3.5 XPointer (XML Pointer Language) 897

31.3.6 XLink (XML Linking Language) 897

31.3.7 XHTML 897

31.3.8 Simple Object Access Protocol (SOAP) 898

31.3.9 Web Services Description Language (WSDL) 898

31.3.10 Universal Discovery, Description, and Integration (UDDI)

899

31.4 XML Schema 901

31.4.1 Resource Description Framework (RDF) 907

Notation3 (N3) and Turtle 908

31.5 XML Query Languages 910

31.5.1 Extending Lore and Lorel to Handle XML 911

31.5.2 XML Query Working Group 912

31.5.3 XQuery-A Query Language for XML 913

31.5.4 XML Information Set 921

31.5.5 XQuery 1.0 and XPath 2.0 Data Model (XDM) 922

31.5.6 XQuery Update Facility 1.0 927

31.5.7 Formal Semantics 929

31.6 XML and Databases 935

31.6.1 Storing XML in Databases 936

31.6.2 XML and SQL 937

31.6.3 Native XML Databases 947

31.7 XML in Oracle 949

Chapter Summary 951

Review Questions 953

Exercises 954

PART 9 Business Intelligence

CHAPTER 32 Data Warehousing Concepts 956

32.1 Introduction to Data Warehousing 956

32.1.1 The Evolution of Data Warehousing 957

32.1.2 Data Warehousing Concepts 957

32.1.3 Benefits of Data Warehousing 958

32.1.4 Comparison of OLTP Systems and Data Warehousing 959

32.1.5 Problems of Data Warehousing 960

32.1.6 Real-Time Data Warehouse 962

32.2 Data Warehouse Architecture 962

32.2.1 Operational Data 962

32.2.2 Operational Data Store 963

32.2.3 ETL Manager 963

32.2.4 Warehouse Manager 963

32.2.5 Query Manager 964

32.2.6 Detailed Data 964

32.2.7 Lightly and Highly Summarized Data 964

32.2.8 Archive/Backup Data 964

<<数据库系统>>

~~ .				
32.2	2.9	Me	tada	ta 964

32.2.10 End-User Access Tools 965

32.3 Data Warehousing Tools and Technologies 966

32.3.1 Extraction, Transformation, and Loading (ETL) 966

32.3.2 Data Warehouse DBMS 968

32.3.3 Data Warehouse Metadata 970

32.3.4 Administration and Management Tools 971

32.4 Data Mart 971

32.4.1 Reasons for Creating a Data Mart 972

32.5 Data Warehousing Using Oracle 972

32.5.1 New Warehouse Features in Oracle 10g/11g 975

Chapter Summary 976

Review Questions 977

Exercise 977

CHAPTER 33 Data Warehousing Design 978

33.1 Designing a Data Warehouse Database 978

33.2 Data Warehouse Development Methodologies 979

33.3 Kimball誷 Business Dimensional Lifecycle 980

33.4 Dimensional Modeling 981

33.4.1 Comparison of DM and ER models 984

33.5 The Dimensional Modeling Stage of Kimball誷 Business

Dimensional Lifecycle 984

33.5.1 Create a High-Level Dimensional Model (Phase I) 985

Step 1: Select Business Process 985

Step 2: Declare Grain 985

Step 3: Choose Dimensions 986

Step 4: Identify Facts 987

33.5.2 Identify All Dimension Attributes for the Dimensional Model

(Phase II) 989

33.6 Data Warehouse Development Issues 990

33.7 Data Warehousing Design Using Oracle 991

33.7.1 Oracle Warehouse Builder Components 992

33.7.2 Using Oracle Warehouse Builder 992

33.7.3 New Warehouse Builder Features in Oracle 10g/11g 996

Chapter Summary 997

Review Questions 998

Exercises 998

CHAPTER 34 OLAP 999

34.1 Online Analytical Processing 999

34.1.1 OLAP Benchmarks 1000

34.2 OLAP Applications 1001

34.3 Multidimensional Data Model 1002

34.3.1 Alternative Multidimensional Data Representations 1002

34.3.2 Dimensional Hierarchy 1004

34.3.3 Multidimensional Operations 1005

34.3.4 Multidimensional Schemas 1005

34.4 OLAP Tools 1006

<<数据库系统>>

34.4.1 Codd調 Rules for OLAP Tools 1006	34.4.1	Codd調	Rules	for OI	AP 1	Fools	1006
--	--------	-------	-------	--------	------	-------	------

34.4.2 OLAP Server-Implementation Issues 1007

34.4.3 Categories of OLAP Servers 1008

34.5 OLAP Extensions to the SQL Standard 1011

34.5.1 Extended Grouping Capabilities 1011

34.5.2 Elementary OLAP Operators 1015

34.6 Oracle OLAP 1017

34.6.1 Oracle OLAP Environment 1017

34.6.2 Platform for Business Intelligence Applications 1017

34.6.3 Oracle Database 1018

34.6.4 Oracle OLAP 1019

34.6.5 Performance 1020

34.6.6 System Management 1021

34.6.7 System Requirements 1021

34.6.8 New OLAP Features in Oracle 11g 1021

Chapter Summary 1021

Review Questions 1022

Exercises 1022

CHAPTER 35 Data Mining 1023

35.1 Data Mining 1023

35.2 Data Mining Techniques 1024

35.2.1 Predictive Modeling 1025

35.2.2 Database Segmentation 1026

35.2.3 Link Analysis 1027

35.2.4 Deviation Detection 1028

35.3 The Data Mining Process 1028

35.3.1 The CRISP-DM Model 1028

35.4 Data Mining Tools 1030

35.5 Data Mining and Data Warehousing 1031

35.6 Oracle Data Mining (ODM) 1031

35.6.1 Data Mining Capabilities 1031

35.6.2 Enabling Data Mining Applications 1031

35.6.3 Predictions and Insights 1032

35.6.4 Oracle Data Mining Environment 1032

35.6.5 New Data Mining Features in Oracle 11g 1033

Chapter Summary 1033

Review Questions 1034

Exercises 1034

Appendices

APPENDIX B Other Case Studies 1040

APPENDIX C Alternative ER Modeling Notations 1049

APPENDIX D Summary of the Database Design Methodology for

Relational Databases 1053

APPENDIX E Introduction to Pyrrho: A Lightweight RDBM\$ 1057

References 1069

<<数据库系统>>

Further Reading 1081

APPENDIX F File Organizations and Indexes (Online)

APPENDIX G When Is a DBMS Relational? (Online)

APPENDIX H Commercial DBMSs: Access and Oracle (Online)

APPENDIX I Programmatic SQL (Online)

APPENDIX J Estimating Disk Space Requirements (Online)

APPENDIX K Introduction to Object-Orientation (Online)

APPENDIX L Example Web Scripts (Online)

<<数据库系统>>

章节摘录

版权页:插图:The Database Management System (DBMS) is now the underlying framework of the information system and has fundamentally changed the way in which many organizations operate. The database system remains a very active research area and many significant problems remain. The predecessor to the DBMS was the file-based system, which is a collection of application programs that perform services for the end-users, usually the production of reports. Each program defines and manages its own data. Although the file-based system was a great improvement over the manual filing system, it still has significant problems, mainly the amount of data redundancy present and program—data dependence. The database approach emerged to resolve the problems with the file-based approach. A database is a shared collection of logically related data and a description of this data, designed to meet the information needs of an organization. A DBMS is a software system that enables users to define, create, maintain, and control access to the database. An application program is a computer program that interacts with the database by issuing an appropriate request (typically a SQL statement) to the DBMS. The more inclusive term database system is used to define a collection of application programs that interact with the database along with the DBMS and database itself.

<<数据库系统>>

编辑推荐

<<数据库系统>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com