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O0O0O0O OO0 Chapter4Lyapunov Stability Stability theory plays a central role in systems theory and
engineering.There are different kinds of stability problems that arise in the study of dynamical systems.This chapter
is concerned mainly with stability of equilibrium points.In later chapters,we shall see other kinds of stability,such as
input-output stability and stability of periodic orbits.Stability of equilibrium points is usually characterized in the
sense of Lyapunov,a Russian mathematician and engineer who laid the foundation of the theory,which now carries
his name.An equilibrium point is stable if all solutions starting at nearby points stay nearby; otherwise, it is
unstable.It is asymptotically stable if all solutions starting at nearby points not only stay nearby,but also tend to the
equilibrium point as time approaches infinity. These notions are made precise in Section 4.1,where the basic
theorems of Lyapunov's method for autonomous systems are given.An extension of the basic theory,due to
LaSalle,is given in Section 4.2.For a linear time-invariant system (x)(t) = Ax(t),the stability of the equilibrium point
x = 0 can be completely characterized by the location of the eigenvalues of A.This is discussed in Section 4.3.In the
same section,it is shown when and how the stability of an equilibrium point can be determined by linearization
about that point.In Section 4.4,we introduce class K.and class K.L functions,which are used extensively in the rest
of the chapter,and indeed the rest of the book.In Sections 4.5 and 4.6,we extend Lyapunov's method to
nonautonomous systems.In Section 4.5,we define the concepts of uniform stability,uniform asymptotic
stability,and exponential stability for nonautonomous systems,and give Lyapunov's method for testing them.In
Section 4.6,we study linear timevarying systems and linearization.
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