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OO000O OO0 superconducting pair of electrons is incident from the left. This pair of electrons meets a hole
in the normal-metal barrier, leaving an electron behindthat moves to the right. That electron travels to the
barrier-superconductorinterface on the right, and a superconducting pair and a retroreflected holeemerge; the hole
travels to the left in the metal, and the superconductingpair travels to the right in the right superconducting lead.
The net effectis that a superconducting pair has been carried across the barrier from theleft to the right, and there is
a localized electron-hole state that remainsin the barrier. A similar process can carry current in the opposite
direction, and one can view the lack of supercurrent when there is no phasedifference across the junction as
corresponding to an equal occupation ofthe left and right current-carrying states. In a one-dimensional system,
theAndreev bound state has a well-defined energy, but in a three-dimensionalsystem, because of the possible
nonzero value for the transverse (kx andkv) momenta, these Andreev bound states appear as finite-width peaks
inthe DOS. Because the electrons involved in the Andreev bound states have energies close to the chemical
potential, we expect these states to be locatedat an energy below the bulk superconducting gap. When scattering is
added to the barrier, we can characterize the level ofscattering with the Thouless energy for the diffusive metal
barrier (plus thecontribution from the contact resistance, of course). When such scatteringis included,
quasiclassical calculations say there will be a so-called "hard"minigap in the DOS, where the DOS vanishes over a
region proportionalto ETa about the chemical potential [Golubov and Kupriyanov (1989);Golubov, Wilhelm and
Zaikin (1997); Zhou, et al. (1998); Pilgram, Belzig,and Bruder (2000)]. Since there is no gap when there is no
scattering,and the Thouless energy decreases as the thickness of the barrier increases,the gap region is expected to
first grow, and then decrease as scattering isturned on. Since a ballistic-metal-barrier junction has a nonzero
Thoulessenergy, this analysis cannot be consistent with the Thouless energy solely determining the minigap, but
most quasiclassical approaches ignore thecontact resistance contribution to the Thouless energy, so from their
perspective, the Thouless energy vanishes for a ballistic-metal-barrier junction,and the analysis is consistent.
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