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[0 O Zhaoying Zhou Doctor[] Professor of Department of Precision Instrument and Mechanology[]
vice-chairman of CHINESE SOCIETY OF MICRO-NANO TECHNOLOGY[ editor of Journal of Micro
Mechatronics. His research interests are in MEMSLI Technology of measurement and control] Bio-medical
instrument. He published more than 300 papers] 2 academic books. Zhonglin Wang Dr. Wang received his Ph.D
in Physics from Arizona State University in 1987. After a year of post-doctoral in the State University of New York
at Stony Brook in 198801 Dr. Wang was awarded a Research Fellowship by the Cavendish Laboratory[]

University of Cambridge] England. He received a U.S. Department of Energy Research Fellowship at Oak Ridge
National Laboratory in 19891 and one year later he was appointed as a Research Associate Professor by the
University of Tennessee. In 1993[1 he moved to the National Institute of Standards and Technology [ NIST to
set up the microscopy facility. He joined Georgia Tech in 1995. Dr. Wang has been focused on the atomic
dimension microstructures of materials of technological importance and their relationship with measured physical
properties. The materials that he has been working on are functional and smart thin oxide filmsJ nanoparticles
and self-assemblyd carbon nanotubest] nanowires and nanobelts of semiconductive materialsC and magnetic
nanophase materials. Dr. Wang has had extensive research experience on: applications of high-resolution
transmission electron microscopyld] nano-probe electron energy-loss spectroscopy and energy dispersive X-ray
spectroscopy for quantitative structure determination of crystals and interfaces; electron holography and its
applications for studying nanophase and catalysis materials; synthesis and characterization of monodispersive
nanoparticles; thin oxide films for microelectronics applications; surface structure and its influence on thin film
growth; dynamical diffraction and imaging theories of inelastically scattered electrons; and reflection electron
microscopy and spectroscopy for surface analysis. Dr. Wang discovered the nanobelt in 20011 which is
considered to be a ground-breaking work. The paper on nanobelt was the second most cited paper in chemistry in
2001-2003 world-wide. His paper on piezoelectric nanosprings was one of the most cited papers in materials
science in 2004 world-wide. His recent invention of world’ s first nanogenerator will have profound impacts to
implantable biosensors and molecular machines/robotics. In 1999001 he and his colleagues discovered the world’ s
smallest balanced nanobalance] which was selected as the breakthrough in nanotechnology by the America
Physical Society. He was elected to the European Academy of Science [0 www.eurasc.org [ in 200200 fellow of
the World Innovation Foundation [1 www.thewif.org.uk] in 200400 fellow of American Physical Society in 2005
[0 has received the 2001 S.T. Li prize for Outstanding Contribution in Nanoscience and Nanotechnology[] the
2000 and 2005 Georgia Tech Outstanding Faculty Research Author Awards[] Sigma Xi 2005 sustain research
awards[] Sigma Xi 1998 and 2002 best paper awards[] the 1999 Burton Medal from Microscopy Society of
Americal] and 1998 China-NSF Oversea Outstanding Young Scientists Award. His most recent research focuses
on oxide nanobelts and nanowires] in-situ techniques for nano-scale measurementsC] self-assembly
nanostructurest] fabrication of nano devices and nanosensors for biomedical applications. Liwei Lin Engineering
Department and co-Director at the Berkeley Sensor and Actuator Center. He received his B.S. [1 19861 in Power
Mechanical Engineering from National Tsinghua Universityl] M.S. J 199100 and Ph.D. [0 199300 in Mechanical
Engineering from the University of California at Berkeley. He was an Associate Professor in the Institute of Applied
Mechanics] National Taiwan University[] Taiwan [ 19941 19961 and an Assistant Professor in Mechanical
Engineering Department University of Michigan [0 199601 199901 . His research interests are in design]
modeling and fabrication of micro/nano structurest] micro/nano sensors and micro/nano actuators as well as
mechanical issues in micro/nano systems including heat transfer] solid/fluid mechanics and dynamics. Dr. Lin is
the recipient of the 1998 NSF CAREER Award for research in MEMS Packaging and the 1999 ASME Journal of
Heat Transfer best paper award for his work on micro scale bubble formation. Currently] he serves as a subject
editor for the IEEE/ASME Journal of Microelectromechanical Systems and the North and South America Editor of
Sensors and Actuators — A Physical. He led the effort to establish the MEMS division in ASME and served as the
founding Chairman of the Executive Committee from 20041 2005. He is an ASME Fellow and has 10 issued US
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Superconductor Electronics 1.3.6 Molecular Electronics 1.3.7 Nanoelectromechanical System (NEMS) 1.4
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OO0O00O OO0 Wehavealso developed a bioprocessor that exploits AC electroosmosis for concentrating
bioparticles, such as cells and molecules. A combination of the AC electroosmotic flow and other EK forces are
applied to concentrate bioparticles. The long-range bulk fluid flow transports the embedded particles to the region
near the electrode surface, where other short-range EK forces trap the target cells and molecules. The advantage of
AC electroosmosis is that only low applied voltage (a few volts) is required to generate the bulk fluid motion. The
fluid flow can significantly increase the effective range of the bioprocessor while only small applied voltage is
required. In addition, our device takes advantage of the hydrodynamic flow, which is effective for different sizes of
objects, while maintaining the selectivity of EK forces to the targets through, for examples, size and electrical
properties. A large variety of biological samples (from nanometer to micrometer range) can be concentrated on the
same device by just changing the operating parameters. By optimizing the operating parameters, we have
demonstrated concentration of various biological objects including E. coli bacteria, A -phage DNA, and
single-strand DNA fragments as small as 20 base pairs. 2.6.2 Mixing In a variety of processes, such as cell lyses,
polymerase chain reaction (PCR), and DNA hybridization, the mixing of particles, cells, and molecules inside the
microfluidic devices determines the efficiency of the whole system. Effective mixing procedures can significantly
reduce the time required for the entire process. In macro scale devices, turbulence is generated and increases the
contact area of the two or more fluids. Complete mixing is then achieved by molecular diffusion. Typical liquid
flow in microfluidic devices has very low Reynolds number. Molecular diffusion is responsible for the mixing in the
absence of turbulence and requires a long time for accomplishing thorough mixing. Using force perturbations to
generate folds in the micro mixing device can increase the total interfacial area and hence reduce the necessary
diffusion length and the required mixing mixing.
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