<<晶体管电路基础>>

图书基本信息

书名: <<晶体管电路基础>>

13位ISBN编号: 9787502314033

10位ISBN编号:7502314032

出版时间:1998-03

出版时间:科学技术文献出版社

作者: 林嘉锐

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<晶体管电路基础>>

内容概要

内容简介

本书是一本基础读物,全书分两篇。

上篇低频电路基

础共分8章,下篇高频电路基础共分11章。

其主要内容包

括:晶体管原理,各种放大电路,频率变化电路,振荡器和整流滤波等电路的工作原理和基本分析方法,同时分析了电子设备中有关电子电路的基本概念、理论和典型电路。

在编写中力求物理概念,减少繁琐数学的推导过程,使读者便于自学。

<<晶体管电路基础>>

书籍目录

- 上篇 低频电路基础
- 第一章 半导体与晶体二极管
- 1 1半导体与PN结
- 一、什么是半导体
- 二、N型和P型半导体
- 三、PN结及其单向导电性
- 1 2晶体二极管
- 一、晶体二极管的结构
- 、二极管的伏安特性曲线
- 三、二极管参数及举例 四、二极管性能的简易测试
- 五、稳压管

复习题

第二章 晶体三极管

- 2 1晶体管的结构与放大作用
- 一、晶体三极管的结构
- 二、晶体三极管的电流放大作用
- 三、晶体管内部载流子的运动规律
- 四、我国半导体器件型号命名方法
- 2 2晶体管的特性曲线
- 一、输入特性曲线
- 二、输出特性曲线
- 2 3晶体管的主要参数
- 2 4温度对晶体管参数的影响
- 2 5利用万用表测试晶体三极管

复习题

第三章 晶体管放大电路基础

- 3 1放大器的基本概念
- 一、什么叫放大器
- 二、最简单的放大电路
- 三、静态工作点的设置
- 四、动态工作情况
- 五、直流通路和交流通路
- 六、晶体三极管的三种连接方法
- 七、电源电路的简化表示
- 八、放大电路的主要指标
- 3 2放大电路的基本分析方法
- 一、图解法
- 二、估算法
- 三、单管放大器设计举例
- 3 3静态工作点的稳定电路
- 一、分压式偏置电路
- 、电压负反馈式偏置电路
- 三、温度补偿式偏置电路

<<晶体管电路基础>>

- 3 4晶体管h参数等效电路
- 一、晶体管的等效电路和等效条件
- 二、晶体管的h参数等效电路
- 三、h参数的物理意义
- 四、简单的h参数等效电路
- 五、应用h参数等效电路分析基本放大器
- 3 5多级放大器的放大倍数
- 一、两级放大器放大倍数的计算
- 二、多级放大器放大倍数的计算
- 3 6阻容耦合放大器频率特性分析
- 一、放大器的频率特性
- 二、耦合电容C 1、C 2的选择
- 三、发射极旁路电容C 0的选择
- 四、耦合电容和射极旁路电容同时作用下的放大器下限频率

复习题

第四章 负反馈放大电路

- 4 1负反馈的基本概念
- 一、什么是负反馈
- 二、负反馈的类型
- 4 2负反馈对放大器性能的影响
- 一、负反馈对放大倍数的影响
- 二、负反馈提高了放大倍数的稳定性
- 三、负反馈对频率特性的改善
- 四、负反馈对非线性失真的改善
- 五、负反馈对放大器噪声和干扰的改善
- 六、负反馈对输入电阻和输出电阻的影响
- 4 3负反馈放大器的基本电路
- 一、电流串联负反馈电路
- 二、电压串联负反馈电路
- 三、电压并联负反馈电路
- 四、电流并联负反馈电路
- 五、多极负反馈电路
- 4 4射极输出器
- 一、射极输出器的工作原理
- 二、射极输出器的跟随特性
- 三、射极输出器的计算
- 四、射极输出器的应用

复习题

第五章 场效应管放大电路

- 5 1场效应管的工作原理及特性
- 一、结型场效应管
- 二、绝缘栅场效应管
- 三、场效应管的主要参数和使用注意事项
- 四、场效应管和晶体管的比较
- 5 2场效应管放大器
- 一、静态工作点
- 二、场效应管的交流等效电路

<<晶体管电路基础>>

- 三、放大倍数和输入输出电阻
- 四、源极输出器
- 复习题
- 第六章 直流放大器
- 6 1直流放大的主要问题
- 一、级间耦合问题
- 二、零点漂移问题
- 6 2直流放大器的直接耦合方式
- 一、提高后级的发射极电位
- 二、NPN PNP型管直接耦合
- 6 3零点漂移产生的原因及消除措施
- 一、产生零点漂移的原因
- 二、温度补偿电路
- 6 4差动放大器
- 一、差动放大器的工作原理
- 二、典型的差动放大器
- 三、具有恒流源的差动放大器
- 四、其它接法的差动放大器
- 复习题
- 第七章 功率放大电路
- 7 1对功率放大电路的要求
- 一、输出功率要大
- 二、非线性失真要小
- 三、效率要高
- 7 2甲类单管功率放大器
- 一、甲类功率放大器的分析
- 二、甲类功率放大器的设计举例
- 三、甲类功率放大器存在的问题
- 7 3乙类推挽功率放大电路
- 一、乙类推挽功率放大电路的工作原理
- 二、乙类推挽放大器工作的图解分析法
- 三、非线性失真
- 四、推挽功率放大电路的计算
- 五、计算举例
- 7 4无输出变压器功率放大电路
- 一、输入变压器倒相式推挽电路
- 二、互补对称式推挽电路
- 三、等效互补对称的推挽电路
- 7 5功率管的散热问题
- 复习题
- 第八章 整流与稳压
- 8 1整流电路
- 一、半波整流电路
- 二、全波整流电路
- 三、桥式整流电路
- 8 2滤波电路
- 一、电容滤波器

<<晶体管电路基础>>

- 二、电感滤波器
- 三、倒L型滤波器
- 四、 型滤波器
- 8 3稳压电路
- 一、硅稳压管稳压电路
- 二、晶体管稳压电路
- 三、提高稳压电源性能的几种电路
- 四、稳压电源的过电流保护措施
- 五、截止型过电流保护电路

复习题

下篇 高频电路基础

第一章 绪论

- 1 1无线电信号的初步概念
- 1 2电磁波
- 一、电磁波是由电磁振荡产生的
- 二、电磁波的特性 三、电磁波的发射
- 1 3调制与调幅信号简介
- 一、调制的概念
- 二、调幅信号的数学表示式及波形
- 1 4信号的频谱特性
- 一、任何形式信号的分解
- 二、频谱图
- 三、信号的频带宽度
- 四、调幅信号的频谱及其带宽
- 1 5广播、电视发送的方框图
- 一、广播发送系统的方框图
- 二、电视发送系统的方框图
- 1 6接收无线电广播的主要过程
- 1 7无线电波波段的划分
- 1 8无线电波的传播

复习题

- 第二章 电路元件的高频特性
- 2 1电感线圈的电感量与高频特性
- 2 2电容器的电容量与高频特性
- 2 3屏蔽

复习题

- 第三章 简单谐振回路
- 3 1串联谐振回路
- 一、串联回路电流的数学表示式
- 二、串联回路的电流谐振曲线
- 三、串联回路的相频特性曲线
- 四、回路的谐振频率
- 五、回路的品质因数
- 六、计算例题
- 3 2并联谐振回路
- 一、并联回路端电压的数学表示式

<<晶体管电路基础>>

- 二、并联回路的电压谐振曲线
- 三、并联回路的电压相频特性曲线
- 四、并联回路的谐振频率
- 五、并联回路的品质因数
- 六、并联回路的谐振电阻
- 七、串、并联谐振回路的对偶关系
- 3 3谐振曲线的抑制比
- 3 4谐振回路的通频带
- 3 5谐振回路的选择性
- 3 6信号源内阻及负载对谐振回路的影响
- 一、对串联谐振回路的影响
- 、对并联谐振回路的影响
- 三、考虑信号源的输出电容和负载电容的影响

复习题

第四章 晶体管的共发射极等效电路

- 4 1晶体管等效电路的概念和类型
- 一、等效电路的概念
- 二、晶体管等效电路的定义
- 三、晶体管等效电路的类型
- 4 2晶体二极管的高频等效电路
- 一、势垒电容C T
- 、扩散电容C D
- 4 3晶体管的共发射极混合 型等效电路
- 一、混 等效电路的导出
- 二、混 参数的意义
- 三、混 等效电路的简化
- 4 4晶体管的电流放大系数
- 一、晶体管共发射极电流放大系数
- 二、电流放大系数 的讨论
- 4 5晶体管的频率参数f 和f T
- 一、晶体管共射电流放大系数 的截止频率f
- 二、晶体管的特征频率f T
- 4 6晶体管的Y参数等效电路
- 一、四端网络的Y参数方程组
- 二、Y参数等效电路
- 三、晶体管Y参数的定义
- 四、Y参数与混 参数的关系及Y参数的物理意义
- 4 7两种等效电路的比较

复习题

第五章 小信号单调谐放大电路

- 5 1引言
- 一、调谐放大器的作用
- 二、调谐放大器的分类 三、小信号调谐放大器的主要指标
- 5 2小信号单调谐放大器电路的工作原理
- 一、静态工作情况
- 二、动态工作情况

<<晶体管电路基础>>

- 三、电路中各元件的作用
- 5 3单调谐放大器的等效电路
- 5 4谐振频率、品质因数与谐振电阻
- 5 5单调谐放大电路谐振时的增益
- 5 6单调振放大电路的通频带和选择性
- 一、调谐放大器的通频带
- 二、调谐放大器的选择性
- 三、单调谐放大器通频带与选择性的矛盾
- 5 7多级单调谐放大器的级联
- 一、多级单调谐放大器的总增益
- 二、多级单调谐放大器的通频带
- 三、多级调谐放大器的选择性

复习题

第六章 双谐振耦合回路与双调谐放大器

- 6 1引言
- 一、双谐振耦合回路及其形式
- 二、采用双谐振回路的理由
- 6 2电容耦合双谐振回路
- 一、初、次级相同的双回路的谐振曲线
- 二、初、次级不相同的双回路谐振曲线
- 6 3互感耦合双谐振回路
- 6 4双调谐放大器
- 一、电压增益
- 二、选择性和通频带
- 三、双调谐放大器的级联

复习题

第七章 阻容耦合宽频带放大电路

- 7 1RC电路的频率特性
- 一、RC电路频率特性的概念
- 二、相位超前的RC电路
- 三、相位滞后的RC电路
- 7 2 共射阻容放大器的基本电路
- 一、基本电路
- 二、 密勒效应
- 7 3负载为纯电阻时阻容放大电路分析
- 一、电压增益
- 二、通频带与上截止频率
- 三、信号源内阻对高频特性的影响
- 7 4负载为容性时阻容放大电路分析
- 7 5扩展放大器通频带的电路
- 一、串联负反馈宽放电路
- 二、并联负反馈宽放电路
- 三、高频补偿宽放电路
- 四、组合管宽放电路

复习题

第八章 LC正弦波振荡电路

8 1自激振荡电路的基本工作原理

源电压增益的概念

<<晶体管电路基础>>

- 8 2自激振荡的起振与稳幅过程
- 一、自激振荡的建立过程及其起振条件
- 二、自激振荡的稳幅过程
- 8 3变压器耦合反馈式振荡电路
- 一、相位起振条件的满足与振荡频率
- 二、振幅起振条件的满足
- 三、振荡器的偏置电路
- 四、变压器反馈振荡电路的几种形式
- 8 4三点式振荡电路
- 一、电容三点式振荡电路
- 二、电感三点式振荡电路
- 8 5 改进型电容三点式振荡电路
- 一、串联改进型振荡电路
- 二、并联改进型振荡电路
- 8 6石英晶体振荡器
- 一、石英晶体的压电效应及等效电路
- 二、石英晶体振荡器
- 8 7RC低频振荡电路
- 一、RC移相式振荡电路
- 二、串并联式RC振荡电路

复习题

第九章 振幅调制与检波

- 9 1非线性器件的频率变换作用
- 一、单一余弦电压作用下的频率变换
- 二、两个不同频率余弦电压作用下的频率变换
- 9 2调幅波的性质
- 一、调幅波的波形、表示式和频谱
- 二、调幅波的能量分配
- 9 3产生调幅波的电路
- 9 4检波器概述
- 9 5二极管检波电路工作的物理过程
- 9 6大信号(峰值)检波器
- 一、检波效率
- 二、输入电阻
- 二、检波的失真
- 9 7二极管检波器的实际电路举例及元件参数的选择

复习题

第十章 调频与鉴频

- 10 1 调频信号的性质
- 一、调频信号的波形
- 二、调频信号的数字表示式
- 三、调频信号的频谱和频带宽度
- 四、调频信号的功率
- 10 2调频信号的产生
- 一、变容二极管
- 二、变容二极管调频电路
- 10 3调频信号的解调 一鉴频

<<晶体管电路基础>>

- 10 4斜率鉴频器
- 10 5相位鉴频器
- 一、平衡输出相位鉴频器
- 二、不平衡输出相位鉴频器
- 三、电容耦合回路相位鉴频器
- 10 6比例鉴频器
- 一、基本电路工作原理
- 二、抑制寄生调幅的原理
- 三、两种实用的比例鉴频电路
- 10 7调频制与调幅制性能的比较

复习题

第十一章 变频

- 11 1概述
- 11 2实现变频的方法
- 11 3变频跨导的概念
- 11 4三极管的变频增益
- 11 5三极管变频器的实际电路
- 11 6设计变频器的一些考虑

复习题

<<晶体管电路基础>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com