第一图书网

图像分析、随机场和动态蒙特卡罗方法

G.Winkler 世界图书出版公司
出版时间:

1999-3  

出版社:

世界图书出版公司  

作者:

G.Winkler  

页数:

324  

Tag标签:

无  

内容概要

This text is concerned with a probabilistic approach to image analysis as initiated by U. GRENANDER, D. and S. GEMAN, B.R. HUNT and many others, and developed and popularized by D. and S. GEMAN in a paper from 1984. It formally adopts the Bayesian paradigm and therefore is referred to as 'Bayesian Image Analysis'. There has been considerable and still growing interest in prior models and, in particular, in discrete Markov random field methods. Whereas image analysis is replete with ad hoc techniques, Bayesian image analysis provides a general framework encompassing various problems from imaging. Among those are such 'classical' applications like restoration, edge detection, texture discrimination, motion analysis and tomographic reconstruction. The subject is rapidly developing and in the near future is likely to deal with high-level applications like object recognition. Fascinating experiments by Y. CHOW,U. GRENANDER and D.M. KEENAN(1987), (1990) strongly support this belief.

书籍目录

Introduction PartⅠ. Bayesian Image Analysis: Introduction 1. The Bayesian Paradigm 1.1 The Space of Images 1.2 The Space of Observations 1.3 Prior and Posterior Distribution 1.4 Bayesian Decision Rules 2. Cleaning Dirty Pictures 2.1 Distortion of Images 2.1.1 Physical Digital Imaging Systems 2.1.2 Posterior Distributions 2.2 Smoothing 2.3 Piecewise Smoothing 2.4 Boundary Extraction 3. Random Fields 3.1 Markov Random Fields 3.2 Gibbs Fields and Potentials 3.3 More on Potentials PartⅡ. The Gibbs Sampler and Simulated Annealing 4. Markov Chains: Limit Theorems 4.1 Preliminaries 4.2 The Contraction Coefficient 4.3 Homogeneous Markov Chains 4.4 Inhomogeneous Markov Chains 5.Sampling and Annealing 5.1 Sampling 5.2 Simulated Annealing 5.3 Discussion 6.Cooling Schedules 6.1 The ICM Algorithm 6.2 Exact MAPE Versus Fast Cooling 6.3 Finite Time Annealing 7.Sampling and Annealing Revisited 7.1 A Law of Large Numbers for Inhomogeneous Markov Chains 7.2 A General Theoresm 7.3 Sampling and Annealing Under ConstraintsPartⅢ.More on Sampling and Annealing 8.Metropolis Algorithms 9.Alternative Approaches 10.Parallel AlgorithmsPartⅣ.Texture Analysis 11.Partitioning 12.Texture Models and ClassificationPartⅤ.Parameter Estimation 13.Maximum Likelihood Estimators 14.Spacial ML EstimationPartⅥ.Supplement 15.A Glance at Neural Networks 16.Mixed APplicationsPartⅦ.Appendix A.Simulation of Random Variables B.The Perron-Frobenius Theorem C.Concave Functions D.A Global Convergence Theorem for Descent AlgorithmsReferencesIndex


图书封面

图书标签Tags

广告

下载页面


图像分析、随机场和动态蒙特卡罗方法 PDF格式下载



个人觉得这本书还是挺不错的,讲述了图像处理中的一种典型的数学随机模拟方法


内容一般,不算是比较前沿,可以作为基础学习


这本书真一般,内容和书名不太一致


相关图书