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This work is aimed at an audience with a sound mathematical background wishing to learn about the rapidly
expanding field of mathematical finance. Its content is suitable particularly for graduate students in mathematics
who have a background in measure theory and probability. The emphasis throughout is on developing the
mathematical concepts required for the theory within the context of their application. No attempt is made to cover
the bewildering variety of novel O or exotic financial in- struments that now appear on the derivatives markets;
the focus through- out remains on a rigorous development of the more basic options that lie at the heart of the
remarkable range of current applications of martingale theory to financial markets. The first five chapters present the
theory in a discrete-time framework. Stochastic calculus is not required, and this material should be accessible to
anyone familiar with elementary probability theory and linear algebra.The basic idea of pricing by arbitrage [J or,
rather, by non-arbitragel] is presented in Chapter 1. The unique price for a European option in a single-period
binomial model is given and then extended to multi-period binomial models. Chapter 2 introduces the idea of a
martingale measure for price processes. Following a discussion of the use of self-financing trad- ing strategies to
hedge against trading risk, it is shown how options can be priced using an equivalent measure for which the
discounted price pro- cess is a martingale. This is illustrated for the simple binomial Cox-Ross- Rubinstein pricing
models, and the Black-Scholes formula is derived as the limit of the prices obtained for such models. Chapter 3
gives the funda- mental theorem of asset pricing, which states that if the market does not contain arbitrage
opportunities there is an equivalent martingale measure. Explicit constructions of such measures are given in the
setting of finite market models. Completeness of markets is investigated in Chapter 4; in a complete market, every
contingent claim can be generated by an admissible self-financing strategy [J and the martingale measure is unique
[ . Stopping times, martingale convergence results, and American options are discussed in a discrete-time
framework in Chapter 5.
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00 O O The unreasonable effectiveness of mathematics is evidenced by the fre- quency with which mathematical
techniques that were developed without thought for practical applications find unexpected new domains of appli-
cability in various spheres of life. This phenomenon has customarily been observed in the physical sciences; in the
social sciences its impact has per- haps been less evident. One of the more remarkable examples of simulta- neous
revolutions in economic theory and market practice is provided by the opening of the worlds first options
exchange in Chicago in 1973, and the ground-breaking theoretical papers on preference-free option pricing by
Black and Scholes [27] [0 quickly extended by Merton [222]0 that appeared in the same year, thus providing a
workable model for the rational market pricing of traded options.From these beginnings, financial derivatives
markets worldwide have become one of the most remarkable growth industries and now constitute a major source
of employment for graduates with high levels of mathemat- ical expertise. The principal reason for this
phenomenon has its origins in the simultaneous stimuli just described, and the explosive growth of these secondary
markets [1 whose levels of activity now frequently exceed the un- derlying markets on which their products are
basedd continues unabated, with total trading volume now measured in trillions of dollars. The vari- ety and
complexity of new financial instruments is often bewildering, and much effort goes into the analysis of the [ ever
more complext mathematical models on which their existence is predicated.
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