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[0 O Ever since the year 19251 when | succeeded in determining the characters of the semi-simple continuous
groups by a combination of E. Cartans infini-tesimal methods and I. Schurs integral procedured | have looked
toward thegoal of deriving the decisive results for the most important of these groups bydirect algebraic
constructiond in particular for the full group of all non-singu-lar linear transformations and for the orthogonal
group.J Owing mainly toR. Brauers intervention and collaboration during the last few years[d it nowappears that |
have in my hands all the tools necessary for this purpose.[] Thetask may be characterized precisely as follows[]
with respect to the assignedgroup of linear transformations in the underlying vector space[] to decomposethe
space of tensors of given rank into its irreducible invariant subspaces.
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