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00 O The implicit function theorem is. along with its close cousin

the inverse func- tion theorem[J one of the most important[] and one

of the oldest] paradigms in modcrn mathemarics. One can see the

germ of the idea for the implicir func tion theorem in the writings

of Isaac Newton [J 1642-172700 I and Gottfried Leib-niz's [J 1646-17160
work cxplicitty contains an instance of implicit

differentiation.

O O Whilc Joseph Louis Lagrange [0 1736-1813[1 found a theorcm that is
essentially a version of the inverse function theorem[ ic was
Augustin-Louis Cauchy [J 1789-185701 who approached the implicit
function theorem with mathematical rigor and it is he who is

gencrally acknowledgcd as the discovcrer of the theorem. In

Chap-ter 20 we will give details of the contributions of Newton[]
Lagrangel] and Cauchy to the development of the implicit function
theorem.
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0000 OO0 Thepicture wewould like to see for the curve (t(s), x(s)) along which (4.10) holds should
resemble that in Figure 4. | (2). It would be even better if the curve resembled that in Figure 4. I(b), because in that
case we could parameterize the curve by t itself. On the other hand, it is conceivable that the solution set of H(t, x)
=0 might look like that in Figure 4.2 where, starting from a zero of the form H (0, x0),we can never arrive at a zero
of the form H(l, xI ). Notice that there are four types of bad behavior for {(t, x) : H(t, x) =0} in Figure 4.2: (1) A
curve starts at t=0, but doubles back without ever getting to t = I, (2) a curve becomes unbounded in x, (3) a curve
reaches a bifurcation point where curves cross, and (4) a curve comes to a dead end where it cannot be continued.
All of these instances of bad behavior are possible; nonetheless they all can be ruled out by imposing some simple
hypotheses and applying the implicit function theorem. To illustrate the ideas, we first state a theorem in which we
can show that the curve H(t(s), x(s)) = 0 has the nice form shown in Figure 4. 1(b). Theorem 4.2,1 Let U be an
open subset of RN. Suppose that H is continuously differentiable in an open set containing [0, 1] x U, that the
function Fo given by FO(x)=H(0, x) ning with the 1764 award given by the Paris Academy of Sciences for his paper
on the libration of the moon.4A basic result in celestial mechanics is Kepler's equation E = M + esin(E), (2.15)
where M is the mean anomaly,5 E is the eccentric anomaly, and e is the eccen-tricity of the orbit. We will describe
these quantities in more detail later. For the moment, we note that M and e should be considered to be the
quantities that can be measured and that e is assumed to be small. One of Lagrange's theorems, now called the
Lagrange Inversion Theorem, gave a formula for the correction that must be made when, for some function ¢ (.),

Y (M) isreplaced by U (E).
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