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0000 Themomentcondition IE(I XII 2/LLI XII ) <o is of course necessary inthis statement since it is
not comparable to the tail behaviorlimt — t2P{ll Xl >t} = 0 necessary for the CLT. Despite this general
sat-isfactory result, the question of the implication CLT — LIL is not solved forall that. Theorem 10.12 indicates
that the spaces in which random variablessatisfying the CLT also satisfy the LIL are exactly those in which the
CLTimplies the integrability property IE(Il XIl 2/LLI XIl ) <eo. This is of coursethe case for cotype 2 spaces but
the characterization of the CLT in Lp-spacesshows that Lp with p > 2 does not satisfy this property. An argument
similarto the one used for Theorem 10.11, but this time with Theorem 9.16 insteadof Dvoretzky's theorem, then
shows that the spaces satisfying CLT = LIL arenecessarily of cotype 2+ € foreverye >0.Butafinal
characterization is stillto be obtained. 10.3 A Small Ball Criterion for the Central Limit Theorem In this last
paragraph, we develop a criterion for the CLT which, while cer-tainly somewhat difficult to verify in practice,
involves in its elaboration sev-eral interesting arguments and ideas developed throughout this book. Theresult
therefore presents some interest from a theoretical point of view. Theidea of its proof can be used further for an
almost sure randomized version ofthe CLT. Recall that we deal in all this chapter with a separable Banach space
B.We noticed, prior to Theorem 3.3, that for a Gaussian Radon random variableG, with values in B each ball
centered at the origin has a positive mass for thedistribution of G. Therefore, it follows that if X is a Borel random
variablesatisfying the CLT in B, forevery e >0.
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