0000 O, tushu007.com
<«<OQ00O00Oooododss

gobooo

O00O<<0b0oobobooobogods>>
1300 ISBNLI O [0 9787510052651

1000 ISBNUI U 1 7510052653
0oooo2013-1
goboobboooodoaon
goooo

guooobbggoooopbrbbgoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000 O, tushu007.com
<«<OQ00O00Oooododss

goon

ooooooobobob@oL)yoboboboboboobooo—0booooboboboboo
gobbobbbougoogobbobbodoooobobbouooooboboobo
gobbobbbuodgooobobobbuodoogobobobbooooooobobboougg
U

gobbobbbudgoggbobobbbodooodobobobbuooouon
Ooo000o0o0obobobobobobooog@Eo)yoboobooooooo

Page 2

0000 O, tushu007.com
<«<OQ00O00Oooododss

goon

OO00oooooboooMmaGilit

Page 3

0000 0O, tushu007.com
<O000ooooodns>

good

List of Algorithms Acknowledgements 1.Introduction 1.1 About this book 1.2 Principles 1.3 on software 1.4 on
approximations andaccuracy 1.5 Summary: the theme of the book Part One Fundamentals 2. Numerical analysisin
a nutshell 2.1 Computer arithmetic Representation of real numbers Machine precision Example of limitations of
floating point arithmetic 2.2 Measuringerrors 2.3 Approximating derivatives with finite differences Approximating
first-order derivatives Approximating second-order derivatives Partial derivatives How to choose h Truncation
error for forward difference 2.4 Numerical instability and ill-conditioning Example of a numerically unstable
algorithm Example of an ill-conditioned problem 2.5Condition number of a matrix Comments and examples 2.6
A primer on algorithmic and computational complexity 2.6.1 Criteria for comparison Order of complexity and
classification 2.A Operation count for basiclinear algebra operations 3. Linear equations and Least Squares
problems Choice of method 3.1 Direct methods 3.1.1 Triangular systems 3.1.2 LU factorization 3.1.3 Cholesky
factorization 3.1.4 QRdecomposition 3.1.5 Singular value decomposition 3.2 Iterative methods 3.2.1 Jacobi,
Gauss-Seidel, and SOR Successive overrelaxation 3.2.2 Convergence of niterative methods 3.2.3 General structure
of algorithms for iterative methods 3.2.4 Block iterative methods 3.3 Sparse linear systems 3.3.1 Tridiagonal systems
3.3.2 Irregular sparse matrices 3.3.3 Structural properties of sparse matrices 3.4 The Least Squares problem 3.4.1
Method of normal equations 3.4.2 Least Squares via QR factorization 3.4.3 Least Squares via SVD decomposition
3.4.4 Final remarks The backslash operator in Matlab 4. Finite difference methods 4.1 An example of a numerical
solution A first numerical approximation A second numerical approximation 4.2 Classification of differential
equations 4.3 The Black-Scholes equation 4.3.1 Explicit, implicit, and 8 -methods 4.3.2 Initial and boundary
conditions and definition of the grid 4.3.3 Implementation of the 6 -method with Matlab 4.3.4 Stability 4.3.5
Coordinate transformation of space variables 4.4 American options 4.A A note on Matlab's function spdiags
5.Binomialtrees 5.1 Motivation Matching moments 5.2 Growing the tree 5.2.1 Implementing a tree 5.2.2
Vectorization 5.2.3 Binomial expansion 5.3 Early exerase 5.4 Dividends 5.5 The Greeks Greeks from the tree Part
Two Simulation 6. Generatmg random numbers 6.1 Monte Carlo methods and sampling 6.1.1 How it allbegan
6.1.2 Financialapplications 6.2 Uniform random number generators 6.2.1 Congruential generators 6.2.2 Mersenne
Twister 6.3 Nonuniform distributions 6.3.1 The inversion method 6.3.2 Acceptance-rejection method 6.4
Specialized methods for selected distributions 6.4.1 Normal distribution 6.4.2 Higher order moments and the
Cornish-Fisher expansion 6.4.3 Further distributions 6.5 Sampling from a discrete set 6.5.1 Discrete uniform
selection 6.5.2 Roulette wheel selection 6.5.3 Random permutations and shuffling 6.6 Sampling errors-and how to
reduce them 6.6.1 The basic problem 6.6.2 Quasi-Monte Carlo 6.6.3 Stratified sampling 6.6.4 Variance reduction
6.7Drawing from empirical distributions 6.7.1 Data randomization 6.7.2 Bootstrap 6.8 Controlled experiments and
experimental design 6.8.1 Replicability and ceteris paribus analysis 6.8.2 Available random number generators in
Matlab 6.8.3 Uniform random numbers from Matlab's rand function 6.8.4 Gaussian random numbers from
Matlab's randn function 6.8.5 Remedies 7.Modelingdependenaes 7.1 Transformation methods 7.1.1 Linear
correlation 7.1.2 Rank correlation 7.2 Markov chains 7.2.1 Concepts 7.2.2 The Metropolis algorithm 7.3 Copula
models 7.3.1 Concepts 7.3.2 Simulation using copulas 8. A gentle introduction to financial simulation 8.1 Setting
the stage 8.2 Single-period simulations 8.2.1 Terminal asset prices 8.2.2 I-over-N portfolios 8.2.3 European options
8.2.4 VaR of a covered put portfolio 8.3 Simple price processes 8.4 Processes with memoryin thelevels of returns
8.4.1 Efficient versus adaptive markets 8.4.2 Moving averages 8.4.3 Autoregressive models 8.4.4 Autoregressive
moving average [ARMAL models 8.4.5 Simulating ARMA models 8.4.6 Models withlong-term memory 8.5
Time-varying volatility 8.5.1 Theconcepts 8.5.2 Autocorrelated time-varying volatility 8.5.3 Simulating GARCH
processes 8.5.4 Selected further autoregressive volatility models 8.6 Adaptive expectations and patternsin price
processes 8.6.1 Price-earningsmodels 8.6.2 Models with learning 8.7Historical simulation 8.7.1 Backtesting 8.7.2
Bootstrap 8.8 Agent-based models and complexity 9. Financial simulation at work: some case studies 9.1Constant
proportion portfolio insurance [CPPI 9.1.1 Basicconcepts 9.1.2 Bootstrap 9.2 VaR estimation with Extreme
Value Theory 9.2.1 Basicconcepts 9.2.2 Scaling the data 9.2.3 Using Extreme Value Theory 9.3 Option pricing

Page 4

0000 O, tushu007.com
<«<OQ00O00Oooododss

9.3.1 Modeling prices 9.3.2 Pricingmodels 9.3.3 Greeks 9.3.4 Quasi-Monte Carlo Part Three Optimization

Page 5

0000 0O, tushu007.com
<O000ooooodns>

good

0000 OO0 Whenlooking atthese examples more closely, one can already spot some limitations of these
methods for financial applications. The optimal solution for n +1 is usually not found by taking the solution for n
and adding one extra point.Likewise, choosing the values for high n but using only some of them [J e.g., because
one runs out of timed will lead to a [J systematicC] bias.Hence, the designer has to decide in advance how many
samples he or she wants to evaluate. Determining the draws for the multivariate case can become a tough
optimization problem in its own right-even [and in particularC] when the draws must be orthogonal O i.e.,
uncorrelatedd in all dimensions.Fang, Tang, Maringer, and Winker [0 20061 provide bounds and show how
heuristics can help in tackling this problem. Repeated experiments generate exactly the same sequence.On the one
hand, this is good as it simplifies replicability.On the other hand, this is not so good because if an interesting spot in
the range is missed once, then repeated experiments will not cover it either.Even more importantly, it is difficult to
judge how stable the results are: Results with pseudorandom numbers will vary from experiment to experiment, but
should converge with increasing sample size.If results are close together, this could indicate stability; if they are all
over the place, then the resultsare obviously not very robust.With quasi-Monte Carlo numbers, theresults will be
identical unless one changes n; and unless n changes dramatically [J in particular when n is already high[J , the
variations in the points could be modest.In finance, one is often interested in extreme risks and rare events, and
generating draws with QMC might lead to biased and unreliable results.

Page 6

0000 O, tushu007.com
<«<OQ00O00Oooododss

goon

oooboobobobob@oO)ybooooooouoooo

Page 7

0000 O, tushu007.com
<«<OQ00O00Oooododss

goon

gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

