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0000 OO0 Whenlooking atthese examples more closely, one can already spot some limitations of these
methods for financial applications. The optimal solution for n +1 is usually not found by taking the solution for n
and adding one extra point.Likewise, choosing the values for high n but using only some of them [J e.g., because
one runs out of timed will lead to a [J systematicC] bias.Hence, the designer has to decide in advance how many
samples he or she wants to evaluate. Determining the draws for the multivariate case can become a tough
optimization problem in its own right-even [ and in particularC] when the draws must be orthogonal O i.e.,
uncorrelatedd in all dimensions.Fang, Tang, Maringer, and Winker [0 20061 provide bounds and show how
heuristics can help in tackling this problem. Repeated experiments generate exactly the same sequence.On the one
hand, this is good as it simplifies replicability.On the other hand, this is not so good because if an interesting spot in
the range is missed once, then repeated experiments will not cover it either.Even more importantly, it is difficult to
judge how stable the results are: Results with pseudorandom numbers will vary from experiment to experiment, but
should converge with increasing sample size.If results are close together, this could indicate stability; if they are all
over the place, then the resultsare obviously not very robust.With quasi-Monte Carlo numbers, theresults will be
identical unless one changes n; and unless n changes dramatically [J in particular when n is already high[J , the
variations in the points could be modest.In finance, one is often interested in extreme risks and rare events, and
generating draws with QMC might lead to biased and unreliable results.
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