<<并行技术基础>>

图书基本信息

书名:<<并行技术基础>>

13位ISBN编号:9787560170275

10位ISBN编号:7560170277

出版时间:2011-2

出版时间:吉林大学出版社

作者: 靳鹏 主编

页数:332

字数:300000

版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com

<<并行技术基础>>

内容概要

所谓并行技术,笼统地说是以并行计算机系统为核心的一系列科学技术的通称,包括并行计算机体系结构、并行操作系统、并行算法设计、并行程序设计语言、并行编程、并行数据库技术等。 《并行技术基础》在上述几个方面对并行技术的基本框架进行了简要介绍。

此外,《并行技术基础》(作者靳鹏)以较宽广的视角讨论了并行技术的发展轨迹,面向未来,提出了并行技术普及化的基本观点,并对此进行了初步论证,尤其是强调了并行操作系统的核心作用,给出了普通用户实现并行计算的几种途径,有一定的技术前瞻性,对普及并行技术有一定的帮助。

编者力求概念准确,论述严谨,内容新颖,图文并茂,可作为高等院校计算机专业本科生教材,也可供计算机专业研究生和相关专业的工程技术人员参考。

<<并行技术基础>>

书籍目录

第一章 并行技术概述
第一节 并行技术的定位
一、并行处理和并行计算 二、计算与计算科学 三、计算能力与计算需求
一、订异与订异科子
二、计算能刀与计算需水
第二节 超级计算机
一、超级计算机的战略意义及其发展历史 二、全球超级计算机排名
二、全球超级计算机排名
三、超级计算机的发展史
第三节 并行计算的能力和效率
第四节 并行技术的主要实现形式
第五节 多核技术的挑战和机遇
第二章 并行计算系统的基本架构
第一节 计算机体系结构概述
一、计算机件次和物质例
一、计算机体系结构的概念 二、计算机组成的概念 三、计算机体系结构分类
二、订异仍件尔泊河乃天
四、SIMD计算机 五、白星社等机
五、向量计算机
六、MIMD计算机
第二节 MIMD结构的并行计算机分类
一、并行计算机组成的三要素 二、并行计算机互联网络的拓扑结构 三、MIMD并行计算机的分类
二、并行计算机互联网络的拓扑结构
三、MIMD并行计算机的分类
第三节 并行计算机分类
一、访存模型 二、Cache管理技术 三、并行计算机分类
二、Cache管理技术
三、并行计算机分类
第三章 并行操作系统
第一节 操作系统回顾
一、操作系统
二、进程
三、线程
· · · · · · · · · · · · · · · · · · ·
第二节 从操作系统角度看并行计算系统
一、网络操作系统 二、分布式操作系统 三、多处理器操作系统
一、 分 仲 八探 作 糸 统
二、多处埋器操作系统
第三节 多线程对多处理器并行系统的支持
一、多线程的实现 二、多线程的处理机调度
二、多线程的处理机调度
第四节 分布主存并行计算系统的任务分配和调度
一、典型的分布主存并行计算系统
二、分布主存并行系统处理器分配调度算法模型
一、典型的分布主存并行计算系统 二、分布主存并行系统处理器分配调度算法模型 三、进程间通信技术

第五节 虚拟存储技术

<<并行技术基础>>

- 一、私有虚存
- 二、共享虚存

第六节 数据一致性管理

- 一、一致性的模式
- 二、存储器一致性模式与编程模型
- 三、DSM系统的软件实现

第四章 并行算法基础

第一节 并行算法的度量

第二节 相关性分析

第三节 并行计算、并行编程模型与并行算法的关系

- 一、SPMD和MPMD并行计算系统
- 二、具体问题的并行求解过程
- 三、并行编程模型简介

第四节 并行算法的设计

- 一、SPMD和MPMD并行算法的设计
- 二、典型的并行算法设计思路

第五节 并行算法的分类及发展

第六节 关于矩阵乘法的典型并行算法

- 一、行列划分算法
- 二、Cannon算法

第五章 并行编程基础

- 第一节 并行编程概述
- 一、并行编程的现状
- 二、并行编程为什么落后于串行编程的讨论
- 三、关于并行语言
- 四、并行编程模型和并行编程语言的分类及评价标准
- 第二节 进程的同构性、并行性
- 第三节 进程间的交互
- 一、进程交互简介
- 二、进程同步
- 三、进程通信的多种模式

第四节 共享存储器并行编程

- 一、Pthreads简介
- 二、程序举例

第五节 消息传递并行编程基础

第六节 数据并行编程模型

- 一、HPF简介
- 二、HPF的数据并行和数据映射

第七节 并行程序性能评价

- 一、浮点峰值性能与实际浮点性能
- 二、数值效率和并行效率
- 三、可扩展分析
- 四、串行程序的优化
- 五、并行程序性能优化

第六章 MPI并行编程

第一节 两个MPI程序及其相关分析

一、MPI并行编程的三种模式

<<并行技术基础>>

- 二、两段MPI例程
- 第二节 MPI基础知识
- 一、MPI的目标
- 二、MPI的发展
- 三、MPI的绑定
- 四、目前主要的MPI实现
- 五、MPI程序的一些惯例
- 第三节 MPI核心接口
- 一、MPI接口参数说明
- 二、MPI核心接口及相关示例
- 三、MPI预定义数据类型
- 四、MPI数据类型匹配
- 五、MPI数据转换
- 第四节 MPI消息
- 一、MPI消息的组成
- 二、任意源和任意标识 三、MPI通信域
- 第五节 简单MPI示例
- 一、用MPI实现计时功能
- 二、获取机器的名字和MPI版本号
- 三、是否初始化及错误退出
- 四、数据接力传送
- 五、任意进程间相互问候
- 六、任意源和任意标识的使用
- 七、编写安全的MPI程序
- 八、阶段小结
- 第六节 点对点通信函数与通信模式
- 第七节 聚合通信与同步
- 第八节 自定义数据类型
- 第九节 进程组与通信器
- 第十节 进程拓扑结构
- 第十一节 文件输A/输出
- 第七章 Linux机群
- 第一节 构建Linux机群的要素
- 第二节 Linux操作系统的安装与基本操作
- 一、Linux系统的安装
- 二、基本使用与管理
- 第三节 Linux下的程序开发环境
- 一、第一个C程序
- 二、Fortran程序的开发
- 三、软件开发
- 第四节 MPICH安装与程序编译、运行、调试
- 一、单机环境下MPICH的安装
- 二、机群环境下MPICH的安装
- 第五节 安装配置基于Linux的并行计算集群
- 一、在单机上安装、配置MPI并行环境
- 二、在联网的多台机器上安装、配置MPI并行环境

<<并行技术基础>>

三、专用并行机群系统的配置 参考文献

<<并行技术基础>>

版权说明

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。

更多资源请访问:http://www.tushu007.com