000004, tushu007.com
<<Java Web [[1 >>

gobooo

00 0 <<JavaWeb 0O [0 >>
1300 ISBNUO O 0 9787564119270
1000 ISBNO 10 [0 7564119276
0dodon2010-1
goooooooo
gooodg

000297

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00000, tushu007.com
<<Java Web OJ [1 >>

gd

This is a book for programmers interested in developing Java web services and Java clients against web services,
whatever the implementation language. The book is a code- driven introduction to JAX-WS (Java API for
XML-Web Services), the framework of choice for Java web services, whether SOAP-based or REST-style. My
approach is to interpret JAX-WS broadly and, therefore, to include leading-edge developments such as the Jersey
project for REST-style web services, officially known as JAX-RS (Java API for XML-RESTful Web Services).
JAX-WS is bundled into the Metro Web Services Stack, or Metro for short. Metro is part of core Java, starting with
Standard Edition 6 (hereafter, core Java 6). However, the Metro releases outpace the core Java releases. The current
Metro release can be down- loaded separately from https://wsit, dev.java.net. Metro is also integrated into the Sun
application server, GlassFish. Given these options, this book's examples are deployed in four different ways: Core
Java only This is the low-fuss approach that makes it easy to get web services and their clients up and running. The
only required software is the Java software development kit (SDK), core Java 6 or later. Web services can be
deployed easily using the Endpoint, HttpServer, and HttpsServer classes. The early examples take this approach.
Core Java with the current Metro release This approach takes advantage of Metro features not yet available in the
core Java bundle. In general, each Metro release makes it easier to write web services and clients. The current Metro
release also indicates where JAX-WS is moving. The Metro release also can be used with core Java 5 if core Java 6 is
not an option. Standalone Tomcat This approach builds on the familiarity among Java programmers with
standalone web containers such as Apache Tomcat, which is the reference implementation. Web services can be
deployed using a web container in essentially the same way as are servlets, JavaServer Pages (JSP) scripts, and
JavaServer Faces (JSF) scripts. A standalone web container such as Tomcat is also a good way to introduce
container-managed security for web services. GlassFish This approach allows deployed web services to interact
naturally with other enterprise components such as Java Message Service topics and queues, a JNDI (Java Naming
and Directory Interface) provider, a backend database system and the @Entity instances that mediate between an
application and the database sys- tem, and an EJB (Enterprise Java Bean) container. The EJB container is important
because a web service can be deployed as a stateless Session EJB, which brings advantages such as
container-managed thread safety. GlassFish works seamlessly with Metro, including its advanced features, and with
popular IDEs (Integrated Development Environment) such as NetBeans and Eclipse. An appealing feature of
JAX-WS is that the API can be separated cleanly from deploy- ment options. One and the same web service can be
deployed in different ways to suit different needs. Core Java alone is good for learning, development, and even
lightweight deployment. A standalone web container such as Tomcat provides additional support. A Java
application server such as GlassFish promotes easy integration of web services with other enterprise technologies.
Code-Driven Approach My code examples are short enough to highlight key features of JAX-WS but also re-
alistic enough to show off the production-level capabilities that come with the JAX-WS framework. Each code
example is given in full, including all of the import statements. My approach is to begin with a relatively sparse
example and then to add and modify features. The code samples vary in length from a few statements to several
pages of source. The code is deliberately modular. Whenever there is a choice between con- ciseness and clarity in
coding, I try to opt for clarity. The examples come with instructions for compiling and deploying the web services
and for testing the service against sample clients. This approach presents the choices that JAX-WS makes available
to the programmer but also encourages a clear and thor- ough analysis of the JAX-WS libraries and utilities. My
goal is to furnish code samples that can serve as templates for commercial applications. JAX-WS is a rich API that is
explored best in a mix of overview and examples. My aim is to explain key features about the architecture of web
services but, above all, to illus- trate each major feature with code examples that perform as advertised: Architecture
without code is empty; code without architecture is blind. My approach is to integrate the two throughout the
book. Web services are a modern, lightweight approach to distributed software systems, that is, systems such as
email or the World Wide Web that require different software com- ponents to execute on physically distinct
devices. The devices can range from large servers through personal desktop machines to handhelds of various

Page 2

000004, tushu007.com
<<Java Web [[1 >>

types. Distributed systems are complicated because they are made up of networked components. There is nothing
more frustrating than a distributed systems example that does not work as claimed because the debugging is
tedious. My approach is thus to provide full, working examples together with short but precise instructions for
getting the sample application up and running. Chapter-by-Chapter Overview The book has seven chapters, the
last of which is quite short. Here is a preview of each chapter: Chapter 1, Java Web Services Quickstart This chapter
begins with a working definition of web services, including the dis- tinction between SOAP-based and REST-style
services. This chapter then focuses on the basics of writing, deploying, and consuming SOAP-based services in core
Java. There are web service clients written in Peri, Ruby, and Java to underscore the language neutrality of web
services. This chapter also introduces Java's SOAP API and covers various ways to inspect web service traffic at the
wire level. The chapter elaborates on the relationship between core Java and Metro.

Page 3

000004, tushu007.com
<<Java Web [[1 >>

goon

OdavaWeb D O:000OD0O@UOD)YDODOOMJavel APIDODOOODODOODODOOXMLWeb O
O JAX-WSO O O RESTful WebD O [0 JAX-RSO
OdavaWwebO DO O OO0O0OO0OOOODODODOODOODOOOOOOOObODODODODODOOO
gobbobbbooooogbobobbboooooooooobo
O000000b00b0ODOWebODDODODODOODODOOOW@aOOOoOooO
OO00OJvaWebODO:OODODO@WDOO)YOODOOD- DOODOSOAPOORESTOOOOODODO
O00000O0ODODOSOAPODOOMaval O - OOWebO DO ODODOOOWSDLOODOODO- O
OSOAPO O ODOO- DOOOODODOOJaval RESTlulWebO OO OO DOORESTRIIO D - OOOO
OSOAPOOORESTOWebO O ODOODOO- ODOOODOODODODOOAX-WSOOODODOODOO
O0o00boboooboobobooboobobooboobobihvaWweb OO0 oooooonDO
gooboooboodoga

Page 4

000004, tushu007.com
<<Java Web [[1 >>

goon

MartinKalin OO0 0000000000 O0O0OO0O0OO0ODOODObDObDOobDOoDO
gpoooboochbodc++dlaval DO 0DbO00ooboooboobobooboobboobg

Page 5

00000, tushu007.com
<<Java Web OJ [1 >>

good

Preface 1. Java Web Services Quickstart What Are Web Services? What Good Are Web Services? A First Example
The Service Endpoint Interface and Service Implementation Bean A Java Application to Publish the Web Service
Testing the Web Service with a Browser A Perl and a Ruby Requester of the Web Service The Hidden SOAP A Java
Requester of the Web Service Wire-Level Tracking of HTTP and SOAP Messages What’ s Clear So Far? Key
Features of the First Code Example Java’ s SOAP API An Example with Richer Data Types Publishing the Service
and Writing a Client Multithreading the Endpoint Publisher What' s Next? 2. All About WSDLs What Good Is a
WSDL? Generating Client-Support Code from a WSDL The @WebResult Annotation WSDL Structure A Closer
Look at WSDL Bindings Key Features of Document-Style Services Validating a SOAP Message Against a WSDL

" s XML Schema The Wrapped and Unwrapped Document Styles Amazon’ s E-Commerce Web Service An
E-Commerce Client in Wrapped Style An E-Commerce Client in Unwrapped Style Tradeoffs Between the RPC
and Document Styles An Asynchronous E-Commerce Client The wsgen Utility and JAX-B Artifacts A JAX-B
Example Marshaling and wsgen Artifacts An Overview of Java Types and XML Schema Types Generating a WSDL
with the wsgen Utility WSDL Wrap-Up Code First VVersus Contract First A Contract-First Example with wsimport
A Code-First, Contract-Aware Approach Limitations of the WSDL What’ s Next? 3. SOAP Handling SOAP:
Hidden or Not? SOAP 1.1 and SOAP 1.2 SOAP Messaging Architecture Programming in the JWS Handler
Framework The RabbitCounter Example Injecting a Header Block into a SOAP Header Configuring the
Client-Side SOAP Handler Adding a Handler Programmatically on the Client Side Generating a Fault from a
@WebMethod Adding a Logical Handler for Client Robustness Adding a Service-Side SOAP Handler Summary
of the Handler Methods The RabbitCounter As a SOAP 1.2 Service The MessageContext and Transport Headers
An Example to Illustrate Transport-Level Access Web Services and Binary Data Three Options for SOAP
Attachments Using Base64 Encoding for Binary Data Using MTOM for Binary Data What’ s Next? 4. RESTful
Web Services What Is REST? Verbs and Opaque Nouns From @WebService to @WebServiceProvider A RESTful
Version of the Teams Service The WebServiceProvider Annotation Language Transparency and RESTful Services
Summary of the RESTful Features Implementing the Remaining CRUD Operations Java API for XML Processing
The Provider and Dispatch Twins A Provider/Dispatch Example More on the Dispatch Interface A Dispatch
Client Against a SOAP-based Service Implementing RESTful Web Services As HttpServlets The
RabbitCounterServlet Requests for MIME-Typed Responses Java Clients Against Real-World RESTful Services
The Yahoo! News Service The Amazon E-Commerce Service: REST Style The RESTful Tumblr Service WADLIng
with Java-Based RESTful Services JAX-RS: WADLing Through Jersey The Restlet Framework What' s Next? 5.
Web Services Security Overview of Web Services Security Wire-Level Security HTTPS Basics Symmetric and
Asymmetric Encryption/Decryption How HTTPS Provides the Three Security Services The
HttpsURLConnection Class Securing the RabbitCounter Service Adding User Authentication HTTP BASIC
Authentication Container-Managed Security for Web Services Deploying a @WebService Under Tomcat Securing
the @WebService Under Tomcat Application-Managed Authentication Container-Managed Authentication and
Authorization Configuring Container-Managed Security Under Tomcat Using a Digested Password Instead of a
Password A Secured @WebServiceProvider WS-Security Securing a @WebService with WS-Security Under
Endpoint The Prompter and the Verifier The Secured SOAP Envelope Summary of the WS-Security Example
What' s Next? 6. JAX-WS in Java Application Servers Overview of a Java Application Server Deploying
@WebServices and @WebServiceProviders Deploying @WebServiceProviders Integrating an Interactive Website
and a Web Service A @WebService As an EJB Implementation As a Stateless Session EJB The Endpoint URL for an
EBJ-Based Service Database Support Through an @Entity The Persistence Configuration File The EJB Deployment
Descriptor Servlet and EJB Implementations of Web Services Java Web Services and Java Message Service
WS-Security Under GlassFish Mutual Challenge with Digital Certificates MCS Under HTTPS MCS Under WSIT
The Dramatic SOAP Envelopes Benefits of JAS Deployment What' s Next? 7. Beyond the Flame Wars A Very
Short History of Web Services The Service Contract in DCE/RPC XML-RPC Standardized SOAP SOAP-Based

Page 6

000004, tushu007.com
<<Java Web [[1 >>

Web Services Versus Distributed Objects SOAP and REST in Harmony Index

Page 7

00000, tushu007.com
<<Java Web [[1 >>

good

0 O O The HTTP start line comes first and specifies the request method, in this case thePOST method, which is
typical of requests for dynamic resources such as webservices or other web application code [I for example, a Java
servlet[] as opposed torequests for a static HTML page. In this case, a POST rather than a GET requestis needed
because only a POST request has a body, which encapsulates the SOAPmessage. Next comes the request URL
followed by the HTTP version, in this casel.1, that the requester understands. HTTP 1.1 is the current version.Next
come the HTTP headers, which are key/value pairs in which a colon [J ;[0 separates the key from the value. The
order of the key/value pairs is arbitrary. The keyAccept occurs three times, with a MIME [Multipurpose Internet
Mail Extensionsl] type/subtype as the value: text/xml, multipart/*, and application/soap. These threepairs signal
that the requester is ready to accept an arbitrary XML response, aresponse with arbitrarily many attachments of any
type [J a SOAP message can havearbitrarily many attachments(] , and a SOAP document, respectively. The HTTP
keySOAPAction is often present in the HTTP header of a web service request and thekey's value may be the empty
string, as in this case; but the value also might be thename of the requested web service operation. Two CRLF

[Carriage Return Line Feed characters, which correspond to two Java\n characters, separate the HTTP headers
from the HTTP body, which is requiredfor the POST verb but may be empty. In this case, the HTTP body contains
theSOAP document, commonly called the SOAP envelope because the outermost ordocument element is named
Envelope. In this SOAP envelope, the SOAP body contains a single element whose local name is getTimeAsString,
which is the name ofthe web service operation that the client wants to invoke. The SOAP request envelope is simple
in this example because the requested operation takes noarguments.

Page 8

000004, tushu007.com
<<Java Web [[1 >>

gobooooo

“HdavaWebD O ODODOODODO0ODDOODODODOODOODODOOODOAmazon Associates WebD [[
O000000000O00DO0DO0DO0D0DO0000bO0bOO0ODOO0ODOOoDOoDOoDOoooooOOon
OO00oO00oO0ooon

" [0 0O ——Greg Ostravich[Denver Javall [0 [0 [0 O

Page 9

000004, tushu007.com
<<Java Web [[1 >>

goon

OdavaWeb D O:00ODD0OO(@C@UOD)Y§Yoobooooooooooo

Page 10

000004, tushu007.com
<<Java Web [[1 >>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 11

