000 0O, tushu007.com
<OQO00d0O0mn>>

gobooo

Jdd<<Oogoogd>>
1300 ISBNUO O [9787564119294
1000 ISBNO O 11 7564119292
0dodon2010-1
gooooboooogooao

00 O O Clay Breshears

00 gd285

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

000 0O, tushu007.com
<OO00Ogdods>>

gd

Why Should You Read This Book? MULTICORE PROCESSORS MADE A BIG SPLASH WHEN THEY WERE
FIRST INTRODUCED. Bowing to the physics of heat and power, processor clock speeds could not keep doubling
every 18 months as they had been doing for the past three decades or more. In order to keep increasing the
processing power of the next generation over the current generation, processor manufacturers began producing
chips with multiple processor cores. More processors running at a reduced speed generate less heat and consume
less power than single-processor chips continuing on the path of simply doubling clock speeds. But how can we use
those extra cores? We can run more than one application at a time, and each program could have a separate
processor core devoted to the execution. This would give us truly parallel execution. However, there are only so
many apps that we can run simultaneously. If those apps aren't very compute-intensive, we're probably wasting
compute cycles, but now we're doing it in more than one processor. Another option is to write applications that
will utilize the additional cores to execute portions of the code that have a need to perform lots of calculations and
whose computations are independent of each other. Writing such programs is known as concurrent programming.
With any programming language or methodology, there are techniques, tricks, traps, and tools to design and
implement such programs. I've always found that there is more "art" than "sdence" to programming. So, this book
Is going to give you the knowledge and one or two of the "secret handshakes" you need to successfully practice the
art of concurrent programming. In the past, parallel and concurrent programming was the domain of a very small
set of programmers who were typically involved in scientific and technical computing arenas. From now on,
concurrent programming is going to be mainstream. Parallel programming will eventually become synonymous
with "programming.” Now is yourtime to get in on the ground floor, or at least somewhere near the start of the
concurrent programming evolution. Who Is This Book For? This book is for programmers everywhere. | work for
a computer technology company, but I'm the only computer science degree-holder on my team. There is only one
other person in the office within the sound of my voice who would know what | was talking about if I said | wanted
to parse an LR(1) grammar with a deterministic pushdown automata. So, CS students and graduates aren't likely to
make up the bulk of the interested readership for this text. For that reason, I've tried to keep the geeky CS material
to a minimum. I assume that readers have some basic knowledge of data structures and algorithms and asymptotic
efficiency of algorithms (Big-Oh notation) that is typically taught in an undergraduate computer science
curriculum. For whatever else I've covered, I've tried to include enough of an explanation to get the idea across. If
you've been coding for more than a year, you should do just fine. I've written all the codes using C. Meaning no
disrespect, | figured this was the lowest common denominator of programming languages that supports threads.
Other languages, like Java and C#, support threads, but if I wrote this book using one of those languages and you
didn’t code with the one I picked, you wouldn't read my book. I think most programmers who will be able to write
concurrent programs will be able to at least "read” C code. Understanding the concurrency methods illustrated is
going to be more important than being able to write code in one particular language. You can take these ideas back
to C# or Java and implement them there. I'm going to assume that you have read a book on at least one threaded
programming method. There are many available, and | don't want to cover the mechanics and detailed syntax of
multithreaded programming here (since it would take a whole other book or two). I'm not going to focus on using
one programming paradigm here, since, for the most part, the functionality of these overlap. I will present a
revolving usage of threading implementations across the wide spectrum of algorithms that are featured in the latter
portion of the book. If there are circumstances where one method might differ significantly from the method used,
these differences will be noted. I've included a review of the threaded programming methods that are utilized in this
book to refresh your memory or to be used as a reference for any methods you have not had the chance to study.
I'm not implying that you need to know all the different ways to program with threads. Knowing one should be
sufficient. However, if you change jobs or find that what you know about programming with threads cannot easily
solve a programming problem you have been assigned, it's always good to have some awareness of what else is
available——this may help you learn and apply a new method quickly. What's in This Book? Chapter 1, Want to

Page 2

000 0O, tushu007.com
<OO00Ogdods>>

Go Faster? Raise Your Hands if You Want to Go Faster/, anticipates and answers some of the questions you might
have about concurrent programming. This chapter explains the differences between parallel and concurrent, and
describes the four-step threading methodology. The chapter ends with a bit of background on concurrent
programming and some of the differences and similarities between distributed-memory and shared-memory
programming and execution models. Chapter 2, Concurrent or Not Concurrent? contains a lot of information
about designing concurrent solutions from serial algorithms. Two concurrent design models——task
decomposition and data decomposition——are each given a thorough elucidation. This chapter gives examples of
serial coding that you may not be able to make concurrent. In cases where there is a way around this, I've given
some hints and tricks to find ways to transform the serial code into a more amenable form. Chapter 3, Proving
Correctness and Measuring Performance, first deals with ways to demonstrate that your concurrent algorithms
won't encounter common threading errors and to point out what problems you might see (so you can fix them).
The second part of this chapter gives you ways to judge how much faster your concurrent implementations are
running compared to the original serial execution. At the very end, since it didn't seem to fit anywhere else, is a
brief retrospective of how hardware has progressed to support the current multicore processors. Chapter 4, Eight
Simple Rules [or Designing Multithreaded Applications, says it all in the title. Use of these simple rules is pointed
out at various points in the text. Chapter 5, Threading Libraries, is a review of OpenMP, Intel Threading Building
Blocks, POSIX threads, and Windows Threads libraries. Some words on domain-specific libraries that have been
threaded are given at the end. Chapter 6, Parallel Sum and Pre/ix ScaB, details two concurrent algorithms. This
chapter also leads you through a concurrent version of a selection algorithm that uses both of the titular algorithms
as components. Chapter 7, MapReduce, examines the MapReduce algorithmic framework; how to implement a
handcoded, fully concurrent reduction operation; and finishes with an application of the MapReduce framework
in a code to identify friendly numbers. Chapter 8, Sorting, demonstrates some of the ins and outs of concurrent
versions of Bubblesort, odd-even transposition sort, Shellsort, Quicksort, and two variations of radix sort
algorithms. Chapter 9, Searching, covers concurrent designs of search algorithms to use when your data is unsorted
and when it is sorted.

Page 3

000 0O, tushu007.com
<OQO00d0O0mn>>

goon

00000000000 DO0bOO0DOO0DO0DoO0oDOO0oD0D0oo0oOOobO@oOOYOoboboo
OO00000000000OOo

00000000000 DO0DO0D00DO00O0000bO0bOO0OOO0ODOOoDOoDOoDOoOooOooOOn
DO00oO00ooon
OO00000O0@oO)yY b oooooooobooooooooooooooooooobooboaoo
OO00000000000O0DOO0DOooOooooon
OO0nell000O0DOD0ODO0000000000000000000@OO)YYd0OO0OO
OO0 DO00ODO00DO0oOooOooo0oo0oo0ooD. Doooooooooboobooooooooog
O- DO0O0O00D0DOO000O00O0OWindowsO OO POSIXO O O OpenMPO Intel Threading Building
Blockss DOOODOODDODOODOOODDOODOOODDODOODOOODDODOODOOODODOOOO
OO00000o0ooooooooooodg
ODO000000000000DOO0Doooooooo@oo)yoooooo

Page 4

000 0O, tushu007.com
<OQO00d0O0mn>>

goon

ClayBreshearsU D OO InelD D00 OO0 ODOODOODODOOODOOOOOOOOODOO

Page 5

000 0O, tushu007.com
<OO00Ogdods>>

good

PREFACE 1 WANT TO GO FASTER? RAISE YOUR HANDS IF YOU WANT TO GO FASTER! Some
Questions You May Have Four Steps of a Threading Methodology Background of Parallel Algorithms
Shared-Memory Programming Versus Distributed-Memory Programming This Book’ s Approach to
Concurrent Programming 2 CONCURRENT OR NOT CONCURRENT? Design Models for Concurrent
Algorithms What' s Not Parallel 3PROVING CORRECTNESS AND MEASURING PERFORMANCE
Verification of Parallel Algorithms Example: The Critical Section Problem Performance Metrics (How Am |
Doing?) Review of the Evolution for Supporting Parallelism in Hardware 4 EIGHT SIMPLE RULES FOR
DESIGNING MULTITHREADED APPLICATIONS Rule 1: Identify Truly Independent Computations Rule 2:
Implement Concurrency at the Highest Level Possible Rule 3: Plan Early for Scalability to Take Advantage of
Increasing Numbers of Cores Rule 4: Make Use of Thread-Safe Libraries Wherever Possible Rule 5: Use the Right
Threading Model Rule 6: Never Assume a Particular Order of Execution Rule 7: Use Thread-Local Storage
Whenever Possible or Associate Locks to Specific Data Rule 8: Dare to Change the Algorithm for a Better Chance
of Concurrency Summary 5 THREADING LIBRARIES Implicit Threading Explicit Threading What Else Is Out
There? Domain-Specific Libraries 6 PARALLEL SUM AND PREFIX SCAN Parallel Sum Prefix Scan Selection A
Final Thought 7 MAPREDUCE Map As a Concurrent Operation Reduce As a Concurrent Operation Applying
MapReduce MapReduce As Generic Concurrency 8 SORTING Bubblesort Odd-Even Transposition Sort
Shellsort Quicksort Radix Sort 9 SEARCHING Unsorted Sequence Binary Search 10 GRAPH ALGORITHMS
Depth-First Search All-Pairs Shortest Path Minimum Spanning Tree 11 THREADING TOOLS Debuggers
Performance Tools Anything Else Out There? Go Forth and Conquer GLOSSARY PHOTO CREDITS INDEX

Page 6

000 0O, tushu007.com
<OO00Ogdods>>

good

(0 O O Two types of dependencies can occur between tasks. The first is order dependency, where sometask relies
on the completed results of the computations from another task. This reliance canbe a direct need to use the
computed values as input to the succeeding task, or it may simplybe the case that the task that follows will be
updating the same memory locations as theprevious task and you must ensure that all of the previous updates have
been completed beforeproceeding. Both of these cases describe a potential data race, which we need to avoid.For
example, if you are building a house, putting up the roof involves attaching the rafters tothe walls, laying down the
decking, and applying the shingles. The dependence between thesethree tasks is one of execution order. You can't
put down shingles until the decking is there,and you can't nail down the decking unless you have the rafters in
place. So, instead of hiringthree teams to do these three tasks in parallel, you can hire one roofing crew to do all
three inthe order required [there is parallelism within each of the roofing steps, plus the act of puttingon the roof
is independent of installing the electrical wiring, the plumbing, and putting updrywallJ .To satisfy an execution
order constraint, you can schedule tasks that have an order dependencyonto the same thread and ensure that the
thread executes the tasks in the proper sequence.The serial code was written with the order dependency already
taken care of. So, the serialalgorithm should guide the correct decomposition of the computations into tasks
andassignment of those tasks to threads. Still, even after grouping tasks to execute on threads,there may be order
constraints between threads. If regrouping tasks to threads is not an optionor will severely hurt performance, you
will be forced to insert some form of synchronizationto ensure correct execution order.The second type of
dependency is data dependency. Identifying potential data dependenciescan be straightforward: look for those
variables that are featured on the left side of theassignment operator. Data races require that the variable in question
have at least one threadthat is writing to that variable. Check for any assignment of values to the same variable
thatmight be done concurrently as well as any updates to a variable that could be read concurrently.Of course,
using pointers to reference memory locations can make the identification processtrickier. There are tools

[covered in Chapter 110 that can assist in finding nonobvious datadependencies in your code.

Page 7

000 0O, tushu007.com
<OQO00d0O0mn>>

gobooooo

“hDobugogobobbbboagd
gobboobbuoooooobobbbbodgd

gpooobobooobodbobobooboobboobooboobobooboobbon
U

O0——TomMurphyO ContraCostal OO OO O0O0O0OO00OOOO® ODOO0OO0OO0O0O0OOO
gobooo

0000000000000 ooooooo
" [0 — — Mike Pearced Intel Software NetworkODO O O OO OO OO

Page 8

000004, tushu007.com
<OQO00d0O0mn>>

goon

ooooooo@oo)ybooooboboboboo

Page 9

000 0O, tushu007.com
<OQO00d0O0mn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 10

