0000 O, tushu007.com
<O QO00d0oods>>

gobooo

Jdd<<googd>>

1300 ISBNUO O [9787564119348
1000 ISBNO 0 10 7564119349

0 0odoo20090 120
gooooboooogooao

O O O Steve Souders
000231

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000 0O, tushu007.com
<O gdogdn>>

gd

Vigilant: alertly watchful, especially to avoid dangerAnyone browsing this book——or its predecessor, High
Performance Web Sites——under-stands the dangers of a slow web site: frustrated users, negative brand
perception,increased operating expenses, and loss of revenue. We have to constantly work to makeour web sites
faster. As we make progress, we also lose ground. We have to be alert forthe impact of each bug fix, new feature,
and system upgrade on our web site's speed.We have to be watchful, or the performance improvements made
today can easily belost tomorrow. We have to be vigilant.Vigil: watch kept on a festival eveAccording to the Latin
root of vigil, our watch ends with celebration. Web sites canindeed be faster——dramatically so——and we can
celebrate the outcome of our care andattention. It's true(]

Making web sites faster is attainable. Some of the world’s mostpopular web sites have reduced their load times by
60% using the techniques describedin this book. Smaller web properties benefit as well. Ultimately, users
benefit.Vigilante: a self-appointed doer of justicelt's up to us as developers to guard our users' interests. At your
site, evangelize performance. Implement these techniques. Share this book with a coworker. Fight for afaster user
experience. If your company doesn't have someone focused on performance,appoint yourself to that role.
Performance vigilante——I like the sound of that.

Page 2

0000 0O, tushu007.com
<O QO00d0oods>>

goon

oooooo@uoOo)yooobobobobobobooooooooooooo
ODO0000000000D0ODAxODODODOOODOWebDOOOOOoooooooooo
OO000000O@UbD)YDDOUOGoogleWebU DO ODUODOOODOODOD O Steve Souderst O O
gobbobbougooogobobo
O00000000D00O(@UOD)DDbODUOD OO High Performance Web Sitestl O O O O O 80%0 O
gobbobbbougooobobobboooooon
OO000000O@ObO)YOOOsouders 800000 obobOobDObOOobODOobOOobOOobobooDOO
OO000000OavaScrip——O0 00000AxODODOOO0O0000O0OOJavaScriptd 000000
gobobobboooooobobo

Network—O O OO OO0OO0OO0OO0OOOO0ODOO0OO0DOO0DOO0OODOO0DOO0ODDOOchunked
encodingl D OO OOOOO

Browser—— O OO OOOOiframed DD O00O00O0OODOOCSSOOODOOODOOO
O000000o0obOdweb20000000000O0O00OODO
ooooooboob@oo)yoobooboboobooobooboooboobooobo

Page 3

0000 O, tushu007.com
<O QO00d0oods>>

goon

Steve Soudersd O Googlel OO0 OO OO ODODOOOOOOOODOO
OOYSlowd FirebugD DD OO D0O0OD0OODOODOODOODOVelocityD 0" ReilyDODOOOOOODOODO

OO00oO00oo
Stevel 00O O00000O0O0DOODOOOOOOOOODODODOMySpaceld LinkedIn(d Facebookd

Page 4

0000 0O, tushu007.com
<O gdogdn>>

good

Credits Preface 1. Understanding Ajax Performance Trade-offs Principles of Optimization Ajax Browser Wow!
JavaScript Summary 2. Creating Responsive Web Applications What Is Fast Enough? Measuring Latency When
Latency Goes Bad Threading Ensuring Responsiveness Web Workers Gears Timers Effects of Memory Use on
Response Time Virtual Memory Troubleshooting Memory Issues Summary 3. Splitting the Initial Payload Kitchen
Sink Savings from Splitting Finding the Split Undefined Symbols and Race Conditions Case Study: Google
Calendar 4. Loading Scripts Without Blocking Scripts Block Making Scripts Play Nice XHR Eval XHR Injection
Script in Iframe Script DOM Element Script Defer document.write Script Tag Browser Busy Indicators Ensuring
(or Avoiding) Ordered Execution Summarizing the Results And the Winner Is 5. Coupling Asynchronous Scripts
Code Example: menu.js Race Conditions Preserving Order Asynchronously Technique 1: Hardcoded Callback
Technique 2: Window Onload Technique 3: Timer Technique 4: Script Onload Technique 5: Degrading Script
Tags Multiple External Scripts Managed XHR DOM Element and Doc Write General Solution Single Script
Multiple Scripts Asynchronicity in the Real World Google Analytics and Dojo YUI Loader Utility 6. Positioning
Inline Scripts Inline Scripts Block Move Inline Scripts to the Bottom Initiate Execution Asynchronously Use Script
Defer Preserving CSS and JavaScript Order Danger: Stylesheet Followed by Inline Script Inline Scripts Aren’ t
Blocked by Most Downloads Inline Scripts Are Blocked by Stylesheets This Does Happen 7. Writing Efficient
JavaScript Managing Scope Use Local Variables Scope Chain Augmentation Efficient Data Access Flow Control
Fast Conditionals Fast Loops String Optimization String Concatenation Trimming Strings Avoid Long-Running
Scripts Yielding Using Timers Timer Patterns for Yielding Summary 8. Scaling with Comet How Comet Works
Transport Techniques Polling Long Polling Forever Frame XHR Streaming Future Transports Cross-Domain
Effects of Implementation on Applications Managing Connections Measuring Performance Protocols Summary 9.
Going Beyond Gzipping Why Does This Matter? What Causes This? Quick Review The Culprit Examples of
Popular Turtle Tappers How to Help These Users? Design to Minimize Uncompressed Size Educate Users Direct
Detection of Gzip Support 10. Optimizing Images Two Steps to Simplify Image Optimization Image Formats
Background Characteristics of the Different Formats More About PNG Automated Lossless Image Optimization
Crushing PNGs Stripping JPEG Metadata Converting GIF to PNG Optimizing GIF Animations Smush.it
Progressive JPEGs for Large Images Alpha Transparency: Avoid AlphalmageLoader Effects of Alpha Transparency
AlphalmageLoader Problems with AlphalmageLoader Progressively Enhanced PNG8 Alpha Transparency
Optimizing Sprites ?ber-Sprite Versus Modular Sprite Highly Optimized CSS Sprites Other Image Optimizations
Avoid Scaling Images Crush Generated Images Favicons Apple Touch Icon Summary 11. Sharding Dominant
Domains Critical Path Who' s Sharding? Downgrading to HTTP/1.0 Rolling Out Sharding IP Address or
Hostname How Many Domains How to Split Resources Newer Browsers 12. Flushing the Document Early Flush
the Head Output Buffering Chunked Encoding Flushing and Gzip Other Intermediaries Domain Blocking During
Flushing Browsers: The Last Hurdle Flushing Beyond PHP The Flush Checklist 13. Using Iframes Sparingly The
Most Expensive DOM Element Iframes Block Onload Parallel Downloads with Iframes Script Before Iframe
Stylesheet Before Iframe Stylesheet After Iframe Connections per Hostname Connection Sharing in Iframes
Connection Sharing Across Tabs and Windows Summarizing the Cost of Iframes 14. Simplifying CSS Selectors
Types of Selectors ID Selectors Class Selectors Type Selectors Adjacent Sibling Selectors Child Selectors
Descendant Selectors Universal Selectors Attribute Selectors Pseudo-Classes and Pseudo-Elements The Key to
Efficient CSS Selectors Rightmost First Writing Efficient CSS Selectors CSS Selector Performance Complex
Selectors Impact Performance (Sometimes) CSS Selectors to Avoid Reflow Time Measuring CSS Selectors in the
Real World Appendix: Performance Tools Index

Page 5

0000 0O, tushu007.com
<O gdogdn>>

good

[0 O O Refactoring the code can reduce its apparent complexity, making optimization andother transformations
more likely to yield benefits. For example, adopting the YSlowrules can have a huge impact on the delivery time of
web pages [J see http://developer. yahoo.com/yslow/[] .Even so, it is difficult for web applications to get under the
Inefficiency line because ofthe size and complexity of web pages. Web pages are big, heavy, multipart things.
Pagereplacement comes with a significant cost. For applications where the differencebetween successive pages is
relatively small, use of Ajax techniques can produce a significant improvement.Instead of requesting a replacement
page as a result of a user action, a packet of datais sent to the server [J usually encoded asJSON text[] and the
server responds with anotherpacket [also typically JSON-encoded[] containing data. A JavaScript program uses
thatdata to update the browser's display. The amount of data transferred is significantly.reduced, and the time
between the user action and the visible feedback isalso significantly reduced. The amount of work that the server
must do is reduced.The amount of work that the browser must do is reduced. The amount of work thatthe Ajax
programmer must do, unfortunately, is likely to increase. That is one of thetrade-offs. The architecture of an Ajax
application is significantly different from most other sortsof applications because it is divided between two systems.
Getting the division of laborright is essential if the Ajax approach is to have a positive impact on performance.
Thepackets should be as small as possible. The application should be constructed as aconversation between the
browser and the server, in which the two halves communicatein a concise, expressive, shared language. Just-in-time
data delivery allows the browserside of the application to keep n small, which tends to keep the loops fast.A
common mistake in Ajax applications is to send all of the application’s data to thebrowser. This reintroduces the
latency problems that Ajax is supposed to avoid. It alsoenlarges the volume of data that must be handled in the
browser, increasing n and againcompromising performance.

Page 6

0000 O, tushu007.com
<O QO00d0oods>>

gobooooo

‘bbobboooooobbbbbuoooooobooo
gobbobbbougoogobbobbodoooobobbouooooboboobo

gobbobbooogogobobo
" 0O 0O ——-aBill Scottd NetflixD D UIO O OO

Page 7

0000 O, tushu007.com
<O QO00d0oods>>

goon

ooooobo@boo)yoboboboboooboooog

Page 8

0000 O, tushu007.com
<O QO00d0oods>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 9

