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PROGRAMMING LANGUAGE DESIGN IS A FASCINATING TOPIC. There are so many programmerswho
think they can design a programming language better than one they are currentlyusing; and there are so many
researchers who believe they can design a programming lan-guage better than any that are in current use. Their
beliefs are often justified, but few oftheir designs ever leave the designer's bottom drawer. You will not find them
representedin this book.Programming language design is a serious business. Small errors in a language design canbe
conducive to large errors in an actual program written in the language, and even smallerrors in programs can have
large and extremely costly consequences. The vulnerabilitiesof widely used software have repeatedly allowed attack
by malware to cause billions ofdollars of damage to the world economy. The safety and security of programming
lan-guages is a recurrent theme of this book.
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This is of course what we have for usual numeric types, such as ints, doubles, complexnumbers, and mathematical
abstractions, such as vectors. This is a most useful notion,which C++ supports for built-in types and for any
user-defined type for which we want it. This contrast to Java where built-in types such and char and int follow it, but
user-definedtypes do not, and indeed cannot. As in Simula, all user-defined types in Java have refer-ence
semantics. In C++, a programmer can support either, as the desired semantics of atype requires. C#

O incompletelyd follows C++ in supporting user-defined types with valuesemantics."General resource
management" refers to the popular technique of having a resource [ e.g.,a file handle or a lockCJ owned by an
object. If that object is a scoped variable, the lifetimeof the variable puts a maximum limit on the time the resource
is held. Typically, a con-structor acquires the resource and the destructor releases it. This is often called
RAIliResource Acquisition Is Initialization[J and integrates beautifully with error handlingusing exceptions.
Obviously, not every resource can be handled in this way, but manycan, and for those, resource management
becomes implicit and efficient.
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