000 0O, tushu007.com
<OQO00d0O0mn>>

gobooo

O00<<0ODOoDoogs>>

1300 ISBNUO O [ 9787564122621

1000 ISBNO U0 [0 7564122625

0 0dododo2010-6
gooooboooogooao
goodoobboooooooboood
0 0 O 480

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1



000 0O, tushu007.com
<OQO00d0O0mn>>

gd

PROGRAMMING LANGUAGE DESIGN IS A FASCINATING TOPIC. There are so many programmerswho
think they can design a programming language better than one they are currentlyusing; and there are so many
researchers who believe they can design a programming lan-guage better than any that are in current use. Their
beliefs are often justified, but few oftheir designs ever leave the designer's bottom drawer. You will not find them
representedin this book.Programming language design is a serious business. Small errors in a language design canbe
conducive to large errors in an actual program written in the language, and even smallerrors in programs can have
large and extremely costly consequences. The vulnerabilitiesof widely used software have repeatedly allowed attack
by malware to cause billions ofdollars of damage to the world economy. The safety and security of programming
lan-guages is a recurrent theme of this book.

Page 2



000 0O, tushu007.com
<OQO00d0O0mn>>

goon

gobbobbbuodggooobbbbbuoooogobbobbboooooobobbobboooog
gobobbobbodooogobboobobbodgd
gobbobbbuodgooobobobbuodoogobobobbooooooobobboougg
gobbobbbougoogobobbudooouoboobbouoooobooboooo

gogobbbbbudooguobbobbbooooguobobbooooooobobobboad
gobobobobboogoooon

Page 3



000 0O, tushu007.com
<OQO00d0O0mn>>

goon

00000000000 DO FedericoBiancuzzi O O O O O O O Shane WardenO 0O OO O O [ Federico
Biancuzzil OO OO OOOOOOOOOODOOOOOOOOODOOOO

O0O0OShaneWardenD OO OO OOO0OO0OO0O0OOODOOOOOOOOOOOOOOOOOOO
O0000000000D0O0OnyxNeonPress0 OO OOOOOODOO

O00O RelyDOOODOOOODOODOODODOO

Page 4



000 0O, tushu007.com
<OO00Ogdods>>

good

FOREWORDPREFACE1 C++ Design Decisions Using the Language OOP and Concurrency Future
Teaching2 PYTHON The Pythonic Way The Good Programmer Multiple Pythons Expedients and
Experience3 APL Paper and Pencil Elementary Principles Parallelism Legacy4 FORTH The Forth Language
and Language Design Hardware Application Design5 BASIC The Goals Behind BASIC Compiler Design
Language and Programming Practice Langua~'e Design Work Goals6é AWK The Life of Algorithms Language
Design Unix and Its Culture The Role of Documentation Computer Science Breeding Little Languages
Designing a New Language Legacy Culture Transformative Technologies Bits Ttiat Change the Universe Theory
and Practice Waiting for a Breakthrough Programming by Example7 LUA The Power of Scripting Experience
Language Design8 HASKELL A Functional Team Trajectory of Functional Programming The Haskell Language
Spreading (Functional) Education Formalism and Evolution9 ML The Soundness of Theorems The Theory of
Meaning Beyond Informatics10 SQL A Seminal Paper The Language Feedback and Evolution XQuery and
XML11 OBJECTIVE-C Eng'ineering Objective-C Growing a Language Education and Training Project
Management and Legacy Software Objective-C and Other Languages Components, Sand, and Bricks Quality As
an Economic Phenomenon Education12 JAVA Power or Simplicity A Matter of Taste Concurrency Designing
aLanguae Feedback Loopl3 C# Language and Design Growing a Language C# The Future of Computer
Sciencel4 UML Learning and Teaching The Role of the People UML Knowledge Be Ready for Change
UsingUML Layers and Languages A Bit of Reusability Symmetric Relationships UML Language Design
Training Developers Creativity, Refinement, and Patternsl5 PERL The Language of Revolutions Language
Community Evolution and Revolution16 POSTSCRIPT Designed to Last Research and Education Interfaces to
Longevity Standard Wishesl7 EIFFEL An Inspired Afternoon Reusability and Genericity Proofreading
Languages Managing Growth and EvolutionAFTERWORDCONTRIBUTORSINDEX

Page 5



000 0O, tushu007.com
<OQO00d0O0mn>>

good

This is of course what we have for usual numeric types, such as ints, doubles, complexnumbers, and mathematical
abstractions, such as vectors. This is a most useful notion,which C++ supports for built-in types and for any
user-defined type for which we want it. This contrast to Java where built-in types such and char and int follow it, but
user-definedtypes do not, and indeed cannot. As in Simula, all user-defined types in Java have refer-ence
semantics. In C++, a programmer can support either, as the desired semantics of atype requires. C#

O incompletelyd follows C++ in supporting user-defined types with valuesemantics."General resource
management" refers to the popular technique of having a resource [ e.g.,a file handle or a lockCJ owned by an
object. If that object is a scoped variable, the lifetimeof the variable puts a maximum limit on the time the resource
is held. Typically, a con-structor acquires the resource and the destructor releases it. This is often called
RAIliResource Acquisition Is Initialization[J and integrates beautifully with error handlingusing exceptions.
Obviously, not every resource can be handled in this way, but manycan, and for those, resource management
becomes implicit and efficient.

Page 6



000 0O, tushu007.com
<OQO00d0O0mn>>

goon
gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 7



