00000, tushu007.com
<<[] O i1IPhonel] [1 >>

gobooo

00 0 <<d OiPhoned O >>
1300 ISBNUO O 0 9787564124113
1000 ISBNO 010 [0 7564124113
0dodoo2010-10
gooooboooogooao
gooodg

00 0 356

guooobobbogooooopbrbbbggoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

00000, tushu007.com
<<[] O i1IPhonel] [1 >>

goon

O 0O OiPhone iPod ThuchD O OO O OO ODOO
O00000000D00DLO0ODb0ObD0ObD0ODOD Xeoded Objective—CO OO ODOODOOOOOOO
goobooooo
O000000b00b0b0obO0obOoboD000o0obO0bU0bOobOobDOooUnOOiTunesApp store
goon
O0000O0OMacOOOODOODOODODOODOOIiPhoned iPodTouch MacO O O 0O O O O O iPhone
OO000000b0O0obOobDOoOiPhoned 0000000

Page 2

00000, tushu007.com
<<[] O i1IPhonel] [1 >>

goon

Alasdair AllanD O O Exeterd DO OO OO0 OO0OO0OOPRPOOOOOO
OO0000ob00ob0obobOobobuoboobooboobooboboobuoboboniPhoned DO

Page 3

00000, tushu007.com
<<[] [iPhonel] [1 >>

good

Preface 1. Why Go Native? The Pros and Cons Why Write Native Applications? The Release Cycle Build It and
They Will Come 2. Becoming a Developer Registering As an iPhone Developer Enrolling in the iPhone
Developer Program The Apple Developer Connection Installing the iPhone SDK Preparing Your iPhone or iPod
touch Creating a Development Certificate Getting the UDID of Your Development Device Creating an App ID
Creating a Mobile Provisioning Profile Making Your Device Available for Development 3. Your First iPhone
App'. Objective-C Basics Object-Oriented Programming The Objective-C Object Model The Basics of
Objective-C Syntax Creating a Project Exploring the Project in Xcode Our Project in Interface Builder Adding
Code Connecting the Outlets in Interface Builder Putting the Application on Your iPhone4. Coding in
Obijective-C Declaring and Defining Classes Declaring a Class with the Interface Defining a Class with the
Implementation Object Typing Properties Synthesizing Properties The Dot Syntax Declaring Methods Calling
Methods Calling Methods on nil Memory Management Creating Objects The Autorelease Pool The alloc,
retain, copy, and release Cycle The dealloc Method Responding to Memory Warnings Fundamental iPhone
Design Patterns The Model-View-Controller Pattern Views and View Controllers The Delegates and DataSource
Pattern Conclusion5. Table-View-Based Applications Simplifying the Template Classes Creating a Table View
Organizing and Navigating Your Source Code Connecting the Outlets Building a Model Adding Images to Your
Projects Connecting the Controller to the Model Mocking Up Functionality with Alert Windows Adding
Navigation Controls to the Application Adding a City View Edit Mode Deleting a City Entry Adding a City
Entry The "Add New City..." Interface Capturing the City Data6. Other View Controllers Utility Applications
Making the Battery Monitoring Application Tab Bar Applications Refactoring the Template Adding Another Tab
Bar Item Finishing Up Modal View Controllers Modifying the City Guide Application The Image Picker View
Controller Adding the Image Picker to the City Guide Application7. Connecting to the Network Detecting
Network Status Apple’s Reachability Class Embedding a Web Browser in Your App A Simple Web View
Controller Displaying Static HTML Files Getting Data Out of a UIWebView Sending Email Getting Data from
the Internet Synchronous Requests Asynchronous Requests Using Web Services8. Handling Data Data Entry
UlTextField and Its Delegate UlTextView and Its Delegate Parsing XML Parsing XML with libxmI2 Parsing
XML with NSXMLParser Parsing JSON The Twitter Search Service The Twitter Trends Application Regular
Expressions Introduction to Regular Expressions Storing Data Using Flat Files Storing Information in an SQL
Database Core Data9. Distributing Your Application Adding Missing Features Adding an Icon Adding a Launch
Image Changing the Display Name Enabling Rotation Building and Signing Ad Hoc Distribution
Developer-to-Developer Distribution App Store Distribution Submitting to the App Store The App Store
Resource Center Reasons for Rejection10. Using Sensors Hardware Support Determining Available Hardware
Support Setting Required Hardware Capabilities Using the Camera The Core Location Framework
Location-Dependent Weather Using the Accelerometer Writing an Accelerometer Application Using the Digital
Compass Accessing the Proximity Sensor Using Vibration11. Geolocation and Mapping User Location
Annotating Maps12. Integrating YOurApplicatiOn Application Preferences Accessing Global Preferences Custom
URL Schemes Using Custom Schemes Registering Custom Schemes Media Playback Using the Address Book
Interactive People Picking Programmatic People Picking13. Other Native Platforms PhoneGap Download and
Installation Building a PhoneGap Project MonoTouch Download and Installation Buildinga MonoTouch
Project14. Going Further Cocoa and Objective-C The iPhone SDK Web Applications Core Data Push
Notifications In-App Purchase Core Animation Game Kit Writing Games Look and Feel Hardware
Accessoriesindex

Page 4

00000, tushu007.com
<<[] [iPhonel] [1 >>

good

00 O O I added a custom PNG icon for the Refresh button to the project, setting the UlButton type to Custom and
the image to point at my refresh icon (you will need to drag your icon into your Xcode project before it will be
available as a custom image). | resized the Refresh button to be the same size as the Info button provided by the
template, setting the View Mode to "Scale to Fill" in the Attributes tab of the Inspector window.When connecting
the UIButtons to the received actions——for example, when dragging the refresh View: action to the Refresh
button——choose Touch Up Inside from the drop-down menu of events that Interface Builder will present to you
when you make the connection.With this number of Ul elements to play with, it's going to be easy to get confused.
What's more, we are not going to connect all of the labels to our code, as some of them aren't going to be updated
(e.g., section headersand the “* Temp:” ,“ Humidity:” ,and“ Wind:” labels).So, for the elements you will
connect to an IBOutlet, use the Identity Inspector’s Interface Builder Identity section to change the Name attribute
of the element to be the same as the variable in the Main View Controller interface file. Figure 7-11 shows the
assignments.While this doesn't make it easier to connect the outlets to the Ul elements, it does make it easier to
check whether we've made an incorrect connection. If you click on File's Owner and switch to the Connections tab
of the Inspector window, as Figure 7-12 shows, you can quickly check that each outlet is connected to the correct
Ul element since the name on each side of the connection should be the same.Although we've written the interface
for the view controller and built and connected our view to the interface, we haven't implemented it yet. Let's hold
off on that until we've built our data model.

Page 5

00000, tushu007.com
<<[] O i1IPhonel] [1 >>

gobooooo

“O00iPhoned DO DO OO0OODOODOOOOOOOIPRONeOSD O OOODOODOOD: DODOO
gobbobobooooodgaon

OO0
" [0 O ——Fraser SpeirsC] [0 [0 Connected Flowd [0 [0 00 O FlickrExportd O O

Page 6

00000, tushu007.com
<<[] O i1IPhonel] [1 >>

goon

OO00OiPhoned O (DO)OO O)ODODOOOOOO XcodeD OO 0O 0OOOO O Interface Builderd O O [
O-00-0000MVCOODOOObjective-cO DD O0D0O0OODODOODODODOODOODODODOOO
0000000000000 D0O0DO000000000000000OAppStoredadhoc 0000
oOooooo
OOiphone0 OO0 DO ODOODOODOOGPSOOODOODOODOODOOOOOOPhonedDODOOOODOO
oooooo

Page 7

00000, tushu007.com
<<[] O i1IPhonel] [1 >>

goon

gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 8

