0000, tushu007.com
<<HadooplU 0 00 I >>

guoooon

0 0O O <<Hadoop O O O >>
1300 ISBNUO O 0 9787564138936
1000 ISBNO O 11 7564138939
0udodon2013-1
gooooboooogooao
gooodg

guooobbggoooopbrbbgoooobbbgooooon

00000000 http://www.tushu007.com

Page 1

0000, tushu007.com
<<HadooplU 0 00 I >>

goon

O Hadoopd OO O(C OO)O30 WO OD)DOD0OO0O000 D0 HadoopDd 0000000 HDFSO O
00000000 MapReduceD J00O000O000HadoopD DO CIDO0O0O00O0O000O0O0O0O
O0O000O0AwoD OO00OC0OO00O000O000O000O000000O0MapReduced 0000
00000000 OHadoopd 0—00000 00 Hadoopd OO Sqoopl 0000 OO0 OO0O
OHDFSOOOPD 0000000000000 00HadoopD DO0OOOHved 000000
OHBaseD D00 D00 O00O000O000 O ZooKeeperO OO O OO OO

Page 2

0000, tushu007.com
<<HadooplU 0 00 I >>

goon

OO00000000O0OWhiteT.O OO0 White T.O O Clouderall 0 O O ApacheD D DO OO OO

(020070 20 O O O ApacheHadoop O O O O O
O O oreillyd O javall O IBMdeveloperWorksO O O 0D 000000000 OO OO O Hadoopd O O O

O

Page 3

0000 0O, tushu007.com
<<HadoopU 0 [J 1 >>

good

Foreword Preface 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems Rational
Database Management System Grid Computing VVolunteer Computing A Brief History of Hadoop Apache
Hadoop and the Hadoop Ecosystem Hadoop Releases What's Covered in This Book Compatibility 2. MapReduce
A Weather Dataset Data Format Analyzing the Data with Unix Tools Analyzing the Data with Hadoop Map and
Reduce Java MapReduce Scaling Out Data Flow Combiner Functions Running a Distributed MapReduce Job
Hadoop Streaming Ruby Python Hadoop Pipes Compiling and Running 3. The Hadoop Distributed Filesystem
The Design of HDFS HDFS Concepts Blocks Namenodes and Datanodes HDFS Federation HDFS
High-Availability The Command-Line Interface Basic Filesystem Operations Hadoop Filesystems Interfaces The
Java Interface Reading Data from a Hadoop URL Reading Data Using the FileSystem API Writing Data Directories
Querying the Filesystem Deleting Data Data Flow Anatomy of a File Read Anatomy of a File Write Coherency
Model Data Ingest with Flume and Sqoop Parallel Copying with distcp Keeping an HDFS Cluster Balanced
Hadoop Archives Using Hadoop Archives Limitations 4. Hadoop 1/O Data Integrity Data Integrity in HDFS
LocalFileSystem ChecksumFileSystem Compression Codecs Compression and Input Splits Using Compression in
MapReduce Serialization The Writable Interface Writable Classes Implementing a Custom Writable Serialization
Frameworks Avro Avro Data Types and Schemas In-Memory Serialization and Deserialization Avro Datafiles
Interoperability Schema Resolution Sort Order Avro MapReduce Sorting Using Avro MapReduce Avro
MapReduce in Other Languages File-Based Data Structures SequenceFile MapFile 5. Developing a MapReduce
Application The Configuration APl Combining Resources Variable Expansion Setting Up the Development
Environment Managing Configuration GenericOptionsParser, Tool, and ToolRunner Writing a Unit Test with
MRUnit Mapper Reducer Running Locally on Test Data Running a Job in a Local Job Runner Testing the Driver
Running on a Cluster Packaging a Job Launching a Job The MapReduce Web Ul Retrieving the Results Debugging
a Job Hadoop Logs Remote Debugging Tuning a Job Profiling Tasks MapReduce Workflows Decomposing a
Problem into MapReduce Jobs JobControl Apache Oozie 6. How MapReduce Works Anatomy of a MapReduce
Job Run Classic MapReduce (MapReduce 1) YARN (MapReduce 2) Failures Failures in Classic MapReduce
Failures in YARN Job Scheduling The Fair Scheduler The Capacity Scheduler Shuffle and Sort The Map Side The
Reduce Side Configuration Tuning Task Execution The Task Execution Environment Speculative Execution
Output Committers Task JVM Reuse Skipping Bad Records 7. MapReduceTypes and Formats MapReduce Types
The Default MapReduce Job Input Formats Input Splits and Records Text Input Binary Input Multiple Inputs
Database Input (and Output) Output Formats Text Output Binary Output Multiple Outputs Lazy Output
Database Output 8. MapReduce Features Counters Built-in Counters User-Defined Java Counters [[J 9. Setting
Up a Hadoop Cluster 10. Administering Hadoop 11. Pig 12. Hive 13. HBase 14. ZooKeeper 15. Sqoop 16. Case
Studies A. Installing Apache Hadoop B. Cloudera's Distribution Including Apache Hadoop C. Preparing the
NCDC Weather Data Index

Page 4

00004, tushu007.com
<<Hadoopll OO 00 O >>

good

0000 Furthermore, blocks fit well with replication for providing fault tolerance and availa-bility. To insure
against corrupted blocks and disk and machine failure, each block is replicated to a small number of physically
separate machines (typically three). If a block becomes unavailable, a copy can be read from another location in a
way that is trans-parent to the client. A block that is no longer available due to corruption or machine failure can be
replicated from its alternative locations to other live machines to bring the replication factor back to the normal
level. (See "Data Integrity" on page 81 for more on guarding against corrupt data.) Similarly, some applications may
choose to set a high replication factor for the blocks in a popular file to spread the read load on the cluster. Like its
disk filesystem cousin, HDFS's fsck command understands blocks. For exam-ple, running: hadoop fsck / -files
-blocks will list the blocks that make up each file in the filesystem. (See also "Filesystem check (fsck)" on page 347.)
Namenodes and Datanodes An HDFS cluster has two types of nodes operating in a master-worker pattern: a
name-node (the master) and a number of datanodes (workers). The namenode manages the filesystem namespace.
It maintains the filesystem tree and the metadata for all the files and directories in the tree. This information is
stored persistently on the local disk in the form of two files: the namespace image and the edit log. The namenode
also knows the datanodes on which all the blocks for a given file are located; however, it does not store block
locations persistently, because this information is reconstructed from datanodes when the system starts. A client
accesses the filesystem on behalf of the user by communicating with the name-node and datanodes. The client
presents a filesystem interface similar to a Portable Operating System Interface (POSIX), so the user code does not
need to know about the namenode and datanode to function.

Page 5

0000, tushu007.com
<<HadooplU 0 00 I >>

goon

O HadoopD OO O(C OO)NO30 O OD)DOOO0O0O0OO0O00O0O0O0OO0O0O0O0O000O000O0OO

OHadoopO OO DOODOODOODOOOOO
O0000OHadoopO O OO OOOOODO O MapReduce APIC O 0O 0O O O O MapReduce2d] O O O [

UObDDoDD0OYARNDO DO

Page 6

0000, tushu007.com
<<HadooplU 0 00 I >>

goon

gobboooboupbDFODODDODOOOO0O0O0OO0OOOODOOO

0000000 :http://www.tushu007.com

Page 7

