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The problem of semantic video scene eategorisation by using spatio-temporal information is one of the significant
open challenges in the field ofvideo retrieval. During the past few years, advances in digital storagetechnology and
computer performance have promoted video as a valuableinformation resource.Numerous video retrieval
technigques have beensuccessfully developed. Most of the techniques for video indexing andretrieval have extended
the previous work in the context image basedretrieval. In this process, video sequences are treated as collections of
stillimages. Relevant key-frames are first extracted followed by their indexingusing existing image processing
techniques based on low-level features. Forthe research in the book the key question is how to encode the spatial
andtemporal information in video for its efficient retrieval. Novel algorithms areproposed for matching videos and
are compared them with state-of-the-art. These algorithms take into account image objects and their
spatialrelationships, and temporal information within a video which correlates withits semantic class. Also, the
algorithms perform hierarchical matchingstarting with frame, and shot level before overall video level similarity can
becomputed. The approach, then, is exhaustively tested on the basis ofprecision and recall measures on a large
number of queries and use the areaunder the average precision recall curve to compare the methods with those
inthe literature. As a part of this book an international video benchmarkMinerva was proposed on which the results
have been discussed.
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00 O O In loka and Kurokawa [1 1992[1 , the user is allowed to specify a query by drawing amotion trajectory. The
similarity is computed as the Euclidean distance between thequery vector and the stored vector for each given
interval to match the specifiedtrajectory with the trajectories of the sequences in the database.3.3.2.2 Correlation
Based ComparisonThis approach is based on finding the maximum correlation between tile predictorand the
current one, for gesture recognition to identify actions. Martin and Shah [ 19921 used dense optical flow fields
over a region, and computed correlation between differentsequences for matching. In Campbell and Bobick" s

[0 199500 work on gesturerecognition, the learning/training process is accomplished by fitting the unique curve
ofa gesture into the subset of the phase space with low-order polynomials.Rui and Anandan [J 200001 addressed
the problem of detecting action boundaries ina video sequence containing unfamiliar and arbitrary visual actions.
Their approach wasbased on detecting temporal discontinuities of the spatial pattern of object region motionwhich
correspond to the action temporal boundary to capture the action. Theyrepresented frame-to-frame optical flow
in terms of the coefficients calculated from all ofthe flow fields in a sequence, after principal components analysis to
determine the mostsignificant such flow fields. The temporal trajectories of those coefficients of the flowfield are
analysed to determine locations of the action segment boundaries of videoobjects.
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