纳米薄膜分析基础
2008-6
科学
阿尔弗德
336
731000
无
对于国内的物理学工作者和青年学生来讲,研读国外优秀的物理学著作是系统掌握物理学知识的一个重要手段。但是,在国内并不能及时、方便地买到国外的图书,且国外图书不菲的价格往往令国内的读者却步,因此,把国外的优秀物理原著引进到国内,让国内的读者能够方便地以较低的价格购买是一项意义深远的工作,将有助于国内物理学工作者和青年学生掌握国际物理学的前沿知识,进而推动我国物理学科研和教学的发展。为了满足国内读者对国外优秀物理学著作的需求,科学出版社启动了引进国外优秀著作的工作,出版社的这一举措得到了国内物理学界的积极响应和支持,很快成立了专家委员会,开展了选题的推荐和筛选工作,在出版社初选的书单基础上确定了第一批引进的项目,这些图书几乎涉及了近代物理学的所有领域,既有阐述学科基本理论的经典名著,也有反映某一学科专题前沿的专著。在选择图书时,专家委员会遵循了以下原则:基础理论方面的图书强调“经典”,选择了那些经得起时间检验、对物理学的发展产生重要影响、现在还不“过时”的著作(如:狄拉克的《量子力学原理》)。反映物理学某一领域进展的著作强调“前沿”和“热点”,根据国内物理学研究发展的实际情况,选择了能够体现相关学科最新进展,对有关方向的科研人员和研究生有重要参考价值的图书。这些图书都是最新版的,多数图书都是2000年以后出版的,还有相当一部分是2006年出版的新书。因此,这套丛书具有权威性、前瞻性和应用性强的特点。由于国外出版社的要求,科学出版社对部分图书进行了少量的翻译和注释(主要是目录标题和练习题),但这并不会影响图书“原汁原味”的感觉,可能还会方便国内读者的阅读和理解。“他山之石,可以攻玉”,希望这套丛书的出版能够为国内物理学工作者和青年学生的工作和学习提供参考,也希望国内更多专家参与到这一工作中来,推荐更多的好书。
现代科学技术(从材料科学到集成电路)已深入到纳米层次。从薄膜到场效应传感器,研究的重点是如何把尺度从微米量级减小到纳米量级。纳米薄膜分析一书主要研究了材料表面及从表面到几十乃至100纳米深的结构与构成。主要讨论了用入射粒子和光子来量化结构并进行成分和深度分析的材料表征方法。 本书讨论了通过入射光子或粒子刻蚀纳米材料来表征材料的方法,入射的粒子能够激发出可测的粒子或光子,这正是表征材料的依据,纳米尺度材料分析实验会用到大量入射粒子与待测粒子束的相互作用。其中较重要的有原子碰撞、卢瑟福背散射、离子遂道、衍射、光子吸收、辐射与非辐射阳县跃迁以及核反应。本书详细介绍了各种分析和扫描探针显微技术。
作者:(美国)阿尔弗德(T.J.Alford)
Preface1. An Overview:Concepts,Units,and the Bohr Atom 1.1 Introduction 1.2 Nomenclature 1.3 Energies,Units,and Particles 1.4 Particle-Wave Duality and Lattice Spacing 1.5 The Bohr Model Problems2. Atomic Collisions and Backscattering Spectrometry 2.1 Introduction 2.2 Kinematics of Elastic Collisions 2.3 Rutherford Backscattering Spectrometry 2.4 Scattering Cross Section and Impact Parameter 2.5 Central Force Scattering 2.6 Scattering Cross Section:Two-Body 2.7 Deviations from Rutherford Scattering at Low and High Energy 2.8 Low-Energy Ion Scattering 2.9 Forward Recoil Spectrometry 2.10 Center of Mass to Laboratory Transformation Problems3. Energy Loss of Light Ions and Backscattering Depth Profiles 3.1 Introduction 3.2 General Picture of Energy Loss and Units of Energy Loss 3.3 Energy Loss of MeV Light Ions in Solids 3.4 Energy Loss in Compounds Bragg's Rule 3.5 The Energy Width in Backscattering 3.6 The Shape of the Backscattering Spectrum 3.7 Depth Profiles with Rutherford Scattering 3.8 Depth Resolution and Energy-Loss Straggling 3.9 Hydrogen and Deuterium Depth Profiles 3.10 Ranges of H and He Ions 3.11 Sputtering and Limits to Sensitivity 3.12 Summary of Scattering Relations Problems4. Sputter Depth Profiles and Secondary Ion Mass Spectroscopy 4.1 Introduction 4.2 Sputtering by Ion Bombardment—General Concepts 4.3 Nuclear Energy Loss 4.4 Sputtering Yield 4.5 Secondary Ion Mass Spectroscopy (SIMS) 4.6 Secondary Neutral Mass Spectroscopy (SNMS) 4.7 Preferential Sputtering and Depth Profiles 4.8 Interface Broadening and Ion Mixing 4.9 Thomas-Fermi Statistical Model of the Atom Problems5. Ion Channeling 5.1 Introduction 5.2 Channeling in Single Crystals 5.3 Lattice Location of Impurities in Crystals 5.4 Channeling Flux Distributions 89 5.5 Surface Interaction via a Two-Atom Model 5.6 The Surface Peak 5.7 Substrate Shadowing:Epitaxial Au on Ag(111) 5.8 Epitaxial Growth 5.9 Thin Film Analysis Problems6. Electron-Electron Interactions and the Depth Sensitivity of Electron Spectroscopies 6.1 Introduction 6.2 Electron Spectroscopies:Energy Analysis 6.3 Escape Depth and Detected Volume 6.4 Inelastic Electron-Electron Collisions 6.5 Electron Impact Ionization Cross Section 6.6 Plasmons 6.7 The Electron Mean Free Path 6.8 Influence of Thin Film Morphology on Electron Attenuation 6.9 Range of Electrons in Solids 6.10 Electron Energy Loss Spectroscopy (EELS) 6.11 Bremsstrahlung Problems7. X-ray Diffraction 7.1 Introduction 7.2 Bragg's Law in Real Space 7.3 Coefficient of Thermal Expansion Measurements 7.4 Texture Measurements in Polycrystalline Thin Films 7.5 Strain Measurements in Epitaxial Layers 7.6 Crystalline Structure 7.7 Allowed Reflections and Relative Intensities Problems8. Electron Diffraction 8.1 Introduction 8.2 Reciprocal Space 8.3 Laue Equations 8.4 Bragg's Law 8.5 Ewald Sphere Synthesis 8.6 The Electron Microscope 8.7 Indexing Diffraction Patterns Problems9. Photon Absorption in Solids and EXAFS 9.1 Introduction 9.2 The Schrodinger Equation 9.3 Wave Functions 9.4 Quantum Numbers,Electron Configuration,and Notation 9.5 Transition Probability 9.6 Photoelectric Effect Square-Well Approximation 9.7 Photoelectric Transition Probability for a Hydrogenic Atom 9.8 X-ray Absorption 9.9 Extended X-ray Absorption Fine Structure (EXAFS) 9.10 Time-Dependent Perturbation Theory Problems10. X-ray Photoelectron Spectroscopy 10.1 Introduction 10.2 Experimental Considerations 10.3 Kinetic Energy of Photoelectrons 10.4 Photoelectron Energy Spectrum 10.5 Binding Energy and Final-State Effects 10.6 Binding Energy Shifts—Chemical Shifts 10.7 Quantitative Analysis Problems11. Radiative Transitions and the Electron Microprobe 11.1 Introduction 11.2 Nomenclature in X-Ray Spectroscopy 11.3 Dipole Selection Rules 11.4 Electron Microprobe 11.5 Transition Rate for Spontaneous Emission 11.6 Transition Rate for Kα Emission in Ni 11.7 Electron Microprobe:Quantitative Analysis 11.8 Particle-Induced X-Ray Emission (PIXE) 11.9 Evaluation of the Transition Probability for Radiative Transitions 11.10 Calculation of the Kβ/Kα Ratio Problems12. Nonradiative Transitions and Auger Electron Spectroscopy 12.1 Introduction 12.2 Auger Transitions 12.3 Yield of Auger Electrons and Fluorescence Yield 12.4 Atomic Level Width and Lifetimes 12.5 Auger Electron Spectroscopy 12.6 Quantitative Analysis 12.7 Auger Depth Profiles Problems13. Nuclear Techniques:Activation Analysis and Prompt Radiation Analysis 13.1 Introduction 13.2 Q Values and Kinetic Energies 13.3 Radioactive Decay 13.4 Radioactive Decay Law 13.5 Radionuclide Production 13.6 Activation Analysis 13.7 Prompt Radiation Analysis Problems14. Scanning Probe Microscopy 14.1 Introduction 14.2 Scanning Tunneling Microscopy 14.3 Atomic Force MicroscopyAppendix 1. Km for 4He+ as Projectile and Integer Target MassAppendix 2. Rutherford Scattering Cross Section of the Elements for 1 MeV4HeiAppendix 3. 4He+ Stopping Cross SectionsAppendix 4. Electron Configurations and Ionization Potentials of AtomsAppendix 5. Atomic Scattering FactorsAppendix 6. Electron Binding EnergiesAppendix 7. X-Ray Wavelengths (nm)Appendix 8. Mass Absorption Coefficient and DensitiesAppendix 9. KLL Auger Energies (eV)Appendix 10. Table of the ElementsAppendix 11. Table of Fluoresence Yields for K,L,and M ShellsAppendix 12. Physical Constants,Conversions,and Useful CombinationsAppendix 13. AcronymsIndex
插图:
《纳米薄膜分析基础17(影印版)》主要研究了材料表面及从表面到几十乃至100纳米深的结构与构成。主要讨论了用入射粒子和光子来量化结构并进行成分和深度分析的材料表征方法以及详细介绍了各种分析和扫描探针显微技术。《纳米薄膜分析基础17(影印版)》可供物理学工作者参考学习。
无
可以作为专业参考书籍看
书是经典,就是印刷太差,对不起价格