第一图书网

理论物理中的Mathematica

鲍曼 科学出版社
出版时间:

2011-6  

出版社:

科学出版社  

作者:

鲍曼  

页数:

942  

Tag标签:

无  

内容概要

本书为国外物理名著系列之一,由鲍曼编著。
本书主要内容简介:Classical Mechanics and Nonlinear
Dynamics Class-tested textbook that shows readers how to solve
physical problems and deal with their underlying theoretical
concepts while using Mathematica~ to derive numeric and symbolic
solutions. Delivers dozens of fully interactive examples for
learning and implementation, constants and formulae can readily be
altered and adapted for the user's purposes. New edition offers
enlarged two-volume format suitable to courses in mechanics and
electrodynamics, while offering dozens of new examples and a more
rewarding interactive learning enwironment.

作者简介

作者:(美国)鲍曼(G.Baumann)

书籍目录

Volume I
Preface
1 Introduction
1.1 Basics
1.1.1 Structure of Mathematica
1.1.2 Interactive Use of Mathematica
1.1.3 Symbolic Calculations
1.1.4 Numerical Calculations
I.1.5 Graphics
1.1.6 Programming
2 Classical Mechanics
2.1 Introduction
2.2 Mathematical Tools
2.2.1 Introduction
2.2.2 Coordinates
2.2.3 Coordinate Transformations and Matrices
2.2.4 Scalars
2.2.5 Vectors
2.2.6 Tensors
2.2.7 Vector Products
2.2.8 Derivatives
2.2.9 Integrals
2.2.10 Exercises
2.3 Kinematics
2.3.1 Introduction
2.3.2 Velocity
2.3.3 Acceleration
2.3.4 Kinematic Examples
2.3.5 Exercises
2.4 Newtonian Mechanics
2.4.1 Introduction
2.4.2 Frame of Reference
2.4.3 Time
2.4.4 Mass
2.4.5 Newton's Laws
2.4.6 Forces in Nature
2.4.7 Conservation Laws
2.4.8 Application of Newton's Second Law
2.4.9 Exercises
2.4.10 Packages and Programs
2.5 Central Forces
2.5.1 Introduction
2.5.2 Kepler's Laws
2.5.3 Central Field Motion
2.5.4 Two-Particle Collisons and Scattering
2.5.5 Exercises
2.5.6 Packages and Programs
2.6 Calculus of Variations
2.6.1 Introduction
2.6.2 The Problem of Variations
2.6.3 Euler's Equation
2.6.4 Euler Operator
2.6.5 Algorithm Used in the Calculus of Variations
2.6.6 Euler Operator for q Dependent Variables
2.6.7 Euler Operator for q + p Dimensions
2.6.8 Variations with Constraints
2.6.9 Exercises
2.6.10 Packages and Programs
2.7 Lagrange Dynamics
2.7.1 Introduction
2.7.2 Hamilton's Principle Hisorical Remarks
2.7.3 Hamilton's Principle
2.7.4 Symmetries and Conservation Laws
2.7.5 Exercises
2.7.6 Packages and Programs
2.8 Hamiltonian Dynamics
2.8.1 Introduction
2.8.2 Legendre Transform
2.8.3 Hamilton's Equation of Motion
2.8.4 Hamilton's Equations and the Calculus of Variation
2.8.5 Liouville's Theorem
2.8.6 Poisson Brackets
2.8.7 Manifolds and Classes
2.8.8 Canonical Transformations
2.8.9 Generating Functions
2.8.10 Action Variables
2.8.11 Exercises
2.8.12 Packages and Programs
2.9 Chaotic Systems
2.9.1 Introduction
2.9.2 Discrete Mappings and Hamiltonians
2.9.3 Lyapunov Exponents
2.9.4 Exercises
2.10 Rigid Body
2.10.1 Introduction
2.10.2 The Inertia Tensor
2.10.3 The Angular Momentum
2.10.4 Principal Axes of Inertia
2.10.5 Steiner's Theorem
2.10.6 Euler's Equations of Motion
2.10.7 Force-Free Motion of a Symmetrical Top
2.10.8 Motion of a Symmetrical Top in a Force Field
2.10.9 Exercises
2.10.10 Packages and Programms
3 Nonlinear Dynamics
3.1 Introduction
3.2 The Korteweg-de Vries Equation
3.3 Solution of the Korteweg-de Vries Equation
3.3.1 The Inverse Scattering Transform
3.3.2 Soliton Solutions of the Korteweg-de Vries Equation
3.4 Conservation Laws of the Korteweg--de Vries Equation
3.4.1 Definition of Conservation Laws
3.4.2 Derivation of Conservation Laws
3.5 Numerical Solution of the Korteweg--de Vries Equation
3.6 Exercises
3.7 Packages and Programs
3.7.1 Solution of the KdV Equation
3.7.2 Conservation Laws for the KdV Equation
3.7.3 Numerical Solution of the KdV Equation
References
Index
Volume II
Preface
4 Electrodynamics
4.1 Introduction
4.2 Potential and Electric Field of Discrete Charge
Distributions
4.3 Boundary Problem of Electrostatics
4.4 Two Ions in the Penning Trap
4.4.1 The Center of Mass Motion
4.4.2 Relative Motion of the Ions
4.5 Exercises
4.6 Packages and Programs
4.6.1 Point Charges
4.6.2 Boundary Problem
4.6.3 Penning Trap
5 Quantum Mechanics
5.1 Introduction
5.2 The Schr6dinger Equation
5.3 One-Dimensional Potential
5.4 The Harmonic Oscillator
5.5 Anharmonic Oscillator
5.6 Motion in the Central Force Field
5.7 Second Virial Coefficient and Its Quantum Corrections
5.7.1 The SVC and Its Relation to ThermodynamicProperties
5.7.2 Calculation of the Classical SVC Be(T) for the(2 n - n)
-Potential
5.7.3 Quantum Mechanical Corrections Bqt(T) andBq2 (T) of the
SVC
5.7.4 Shape Dependence of the Boyle Temperature
5.7.5 The High-Temperature Partition Function for Diatomic
Molecules
5.8 Exercises
5.9 Packages and Programs
5.9.1 QuantumWell
5.9.2 HarmonicOscillator
5.9.3 AnharmonicOsciilator
5.9.4 CentralField
6 General Relativity
6.1 Introduction
6.2 The Orbits in General Relativity
6.2.1 Quasielliptic Orbits
6.2.2 Asymptotic Circles
6.3 Light Bending in the Gravitational Field
6.4 Einstein's Field Equations (Vacuum Case)
6.4.1 Examples for Metric Tensors
6.4.2 The Christoffel Symbols
6.4.3 The Riemann Tensor
6.4.4 Einstein's Field Equations
6.4.5 The Cartesian Space
6.4.6 Cartesian Space in Cylindrical Coordinates
6.4.7 Euclidean Space in Polar Coordinates
6.5 The Schwarzschild Solution
6.5.1 The Schwarzschild Metric in Eddington-Finkelstein Form
6.5.2 Dingle's Metric
6.5.3 Schwarzschild Metric in Kruskal Coordinates
6.6 The Reissner-Nordstrom Solution for a Charged Mass Point
6.7 Exercises
6.8 Packages and Programs
6.8.1 EulerLagrange Equations
6.8.2 PerihelionShift
6.8.3 LightBending
7 Fractals
7.1 Introduction
7.2 Measuring a Borderline
7.2.1 Box Counting
7.3 The Koch Curve
7.4 Multifractals
7.4.1 Multifractals with Common Scaling Factor
7.5 The Renormlization Group
7.6 Fractional Calculus
7.6.1 Historical Remarks on Fractional Calculus
7.6.2 The Riemann-Liouville Calculus
7.6.3 Mellin Transforms
7.6.4 Fractional Differential Equations
7.7 Exercises
7.8 Packages and Programs
7.8.1 Tree Generation
7.8.2 Koch Curves
7.8.3 Multifactals
7.8.4 Renormalization
7.8.5 Fractional Calculus
Appendix
A.1 Program Installation
A.2 Glossary of Files and Functions
A.3 Mathematica Functions
References
Index

章节摘录

版权页:插图:The study of spectroscopic properties of single ions requires that one or two ions are trapped in a cavity. Nowadays, ions can be successfully separated and stored by means of ion traps. Two techniques are used for trapping ions. The first method uses a dynamic electric field, while the second method uses static electric and magnetic fields. The dynamic trap was originally invented by Paul [4.3]. The static trap is based on the work of Penning [4.4]. Both traps use a combination of electric and magnetic fields to confine ions in a certain volume in space. Two paraboloids connected to a dc-source determine the kind of electric field in which the ions are trapped. The form of the paraboloids in turn determines the field of the trap's interior, Since the motion of the ions in Paul's trap is very complicated, we restrict our study to the Penning trap.


编辑推荐

《理论物理中的Mathematica:电动力学,量子力学,广义相对论和分形(第2版)(影印版)》为国外物理名著系列之一。

图书封面

图书标签Tags

广告

下载页面


理论物理中的Mathematica PDF格式下载



科学出版社近年来影印出版了一批国外优秀物理学专著,这是其中的一本。至今已经有27本了。这类物理学专著在美国德国英国等国,价格非常昂贵。以这本书为例,至少定价在100欧元以上。科学出版社为中国读者做了一件好事。谢谢!


有在研究中取得一定成绩的人写的专业书,是很好的,望再多此类机会。


值得一读,值得一学


原来是介绍软件的,不知能不能用上


质量没得说,可惜基础部分没有


英文的,感觉不错


希望纸张能好一点


钱多的就买吧


的确不错额


这本书实在不咋的,偏偏还那么贵,感觉不值。


书只有第二部分,又没有人有第一部分?
书应该有附带CD,里面有书里面的程序代码。有没有人有程序代码的,可以给我一份,谢谢!


这本书的总共只有400多页,是原书的第二册,不是上面写的900页


首先要说明的是,这本书只是mathematica for theoretical physics的下册,内容为第四章及以后,并不包含前三章内容,前三章在mathematica for theoretical physics: Classical Mechanics and Nonlinear Dynamics这本书中,而后者并不包含在国外物理名著系列中=.=!不知道科学出版社在这个系列怎么选书的,选半本,很无语。其次,这套书印刷质量一如既往的补给力,反正打开书看着像盗版书。。。最后,mathematica for theoretical physics这书能下载到很清晰的电子版,建议欲购此书的同学自己下载打印为好,本人打印了前三章,比这本书感觉好多了。。。总之,不推荐购买!


包含了理论物理几个领域的基本方程和计算实例,主要是数值计算的实例。


相关图书