第一图书网

非参数支持向量回归和分类理论及其在金融市场预测中的应用

陈诗一 北京大学出版社
出版时间:

2008-4  

出版社:

北京大学出版社  

作者:

陈诗一  

页数:

239  

内容概要

在金融市场预测领域许多问题无法用传统的方法来刻画内部规律而新的非参数支持向量回归和分类(SVM)方法只需基于自身的独特算法就可以对样本信息不断训练提取出目标经济和金融问题隐台的最优非线性映射关系非常适台解决先验知识不清的预测问题。特别重要的是独特的结构风险最小化设计赋予了SVM最出色的预测功能这是基于经验风险最小化的传统方法不能比拟的。本书利用支持向量回归对不同时间序列模型进行估计分别预测了汇率证券指数收益率以及它们的波动性同时也利用支持向量分类估计了非线性的概率模型对公司信用风险进行了预测。实证结果支持SVM方法预预能力出色的理论优点。 SVM虽然原理复杂,但是参数设定方便编程容易运算快捷且操作性强使得预测完全可以从理论走向具体应用具有广阔的应用前景。本书读者可以是金融市场各类投资者预测工作者经济和金融分析师不同层级的管理决策者也可以是从事预测统计和计量分析的研究生科研人员和高校教师。

作者简介

陈诗一,韩国庆北国立大学计量经济学博士,复旦大学中国社会主义市场经济研究中心(CCES)研究人员复旦大学经济学院教师。主要研究方向为计量经济理论,支持向量算法,时间序列分析预测方法能源和可持续发展中国经济和金融实证研究等,主要研究成果曾在《中国社会科学》 《经济学(季fU)》《数量经济技术经济研究》等刊物发表。

书籍目录

第一章 预测概述 第一节 预测的重要性 第二节 什么是预测? 第三节 预测方法的发展 第四节 预测与决策第二章 支持向量回归和分粪理论 第一节 支持向量算法 第二节 支持向量回归 第三节 支持向量分类 第四节 蒙特卡罗仿真 附录第三章 汇率预测:基于前馈SVR的非线性ARl模型 第一节 介绍 第二节 数据收集和处理 第三节 实证模型设定 第四节 预测方案和评估标准 第五节 预测结果比较分析 第六节 人民币汇率预测 第七节 结论第四章 金融收益率水平预测:基于反馈SVR的非线性ARIMA模型 第一节 介绍 第二节 反馈SVR机制设计 第三节 金融收益率定义 第四节 固定预铡评估 第五节 递归预测评估 第六节 中国证券指数和汇率收益率水平预测 第七节 结论第五章 金融收益率波动性预测:基于反馈SVR的非线性GARCH模型 第一节 介绍 第二节 实证模型和预测方案 第三节 蒙特卡罗仿真 第四节 真实数据检验 第五节 中国金融波动性预测案例 第六节 结论第六章 公司信用风险预测:基于SVC的非线性概率模型 第一节 介绍 第二节 数据描述和处理 第三节 预测分析框架 第四节 实证分析 第五节 CAPM检验案例 第六节 结论第七章 结束语词汇表后记


图书封面

广告

下载页面


非参数支持向量回归和分类理论及其在金融市场预测中的应用 PDF格式下载



对学习支持向量机在金融领域的应用很有帮助


书中是不是能吧所举的例子matlab的程序给出来


内容一般般,没有可读性


相关图书