环和模的范畴第2版
2004-1
世界图书出版公司
KentR.Fuller
376
无
本书是一部研究生教材。作者采用范畴理论而不是算术方式论述环与模的基本理论,内容从环、模、同态、直接和、拟合条件等基本知识一直延伸到Wedderburn-Artin定理、Jacobson根基、张量函数、Morita等价和对偶、内射模和射影模的分解论、半完备环和完环,以及同类书很少论及的同调论、商环和交换环等课题,本版新增内容为阿廷环的经典结果。
GTM13
Preface O. Preliminaries Chapter 1: Rinos, Modules and Homomorphisms 1. Review of Rings and their Homomorphisms 2. Modules and Submodules 3. Homomorphisms of Modules 4. Categories of Modules; Endomorphism Rings Chapter 2: Direct Sums and Products 5. Direct Summands 6. Direct Sums and Products of Modules 7. Decomposition of Rings 8. Generating and Cogenerating Chapter 3: Finiteness Conditions for Modules 9. Semisimple Modules--The Socle and the Radical 10. Finitely Generated and Finitely Cogenerated Modules-Chain Conditions 11. Modules with Composition Series 12. Indecomposable Decompositions of Modules Chapter 4: Classical Ring-Structure Theorems 13. Semisimple Rings 14. The Density Theorem 15. The Radical of a Ring-Local Rings and Artinian RingsChapter 5: Functors Between Module Categories 16.The Hom Functors and Exactness-Projectivity and Injectivity 17.Projective Modules and Generators 18.Injective Modules and Cogenerators 19.The Tensor Functors and Flat Modules 20.Natural TransformationsChapter 6: Equivalence and Duality for Module Categories 21.Equivalent Rings 22.The Morita Characterizations of Equivalence 23.Dualities 24.Morita DualitiesChapter 7: Injective Modules,Projective Modules,and Their Decompositions 25.Injective Modules and Noetherian Rings-The Faith-Walker Theorems 26.Direct Sums of Countably Generated Modules-With Local Endomorphism Rings 27.Semiperfect Rings 28.Perfect Rings 29.Modules with Perfect Endomorphism RingsChapter 8: Classical Artinian Rings 30.Artinian Rings with Duality 31.Injective Projective Modules 32.Serial RingsBibliographyIndex
无
特点为:要求的预备知识少,讨论比较彻底,在不运用同调工具下将环模理论进行得相当出色,读完对基本的表示论的一些概念会有一个较清晰的了解
内容比较好,但是印刷有点问题。
好书,有点儿难,适合花时间研究
书的质量还是不错的
送货很及时,希望以后继续合作。