2014-数学二-考研数学复习全书
2013-3
国家行政学院出版社
李永乐
无
第一篇 高等数学 第一章 函数极限连续 考点与要求 1函数 内容精讲 一、定义 二、重要性质、定理、公式 例题分析 一、求分段函数的复合函数 二、由函数的奇偶性与周期性构造函数 三、求反函数的表达式 四、关于函数有界(无界)的讨论 2极限 内容精讲 一、定义 二、重要性质、定理、公式 三、计算极限的一些有关方法 例题分析 一、求函数的极限 二、已知极限值求其中的某些参数,或已知极 限求另一与此有关的某极限 四、无穷小的比较 五、数列的极限 六、极限运算定理的正确运用 3函数的连续与间断 内容精讲 一、定义 二、重要性质、定理、公式 例题分析 一、讨论函数的连续与间断 二、在连续条件下求参数 三、连续函数的零点问题 自测题 自测题答案与提示 第二章 一元函数微分学 考点与要求 1导数与微分,导数的计算 内容精讲 一、定义 二、重要性质、定理、公式 例题分析 一、按定义求一点处的导数 二、已知,(z)在某点z—z。处可导,求与此有 关的某极限或其中某参数,或已知某极限求 F(x)在z—z。处的导数 三、绝对值函数的导数 四、由极限式表示的函数的可导性 五、导数与微分、增量的关系 六、求导数的计算题 2导数的应用 内容精讲 一、定义 二、重要性质、定理、公式与方法 例题分析 一、增减性、极值、凹凸性、拐点的讨论 二、渐近线 三、曲率与曲率圆 四、最大值、最小值问题 3中值定理、不等式与零点问题 内容精讲 一、重要定理 二、重要方法 例题分析 一、不等式的证明 二、f(x)的零点与f'(x)的零点问题 三、复合函数(x,f(z),f'(x))的零点 四、复合函数φ(x,(x),f'(x),f''(z))的零点 五、“双中值”问题 六、零点的个数问题 七、证明存在某满足某不等式 八、f'(x)与f(x)的一些极限性质的关系 自测题 自测题答案与提示 第三章 一元函数积分学 考点与要求 1不定积分与定积分的概念、性质、理论 内容精讲 一、定义 二、重要性质、定理、公式 例题分析 一、分段函数的不定积分与定积分 二、定积分与原函数的存在性 三、奇、偶函数、周期函数的原函数及变限积分 2不定积分与定积分的计算 内容精讲 一、基本积分公式 二、基本积分方法 例题分析 一、简单有理分式的积分 二、三角函数的有理分式的积分 三、简单无理式的积分 四、两种不同类型的函数相乘的积分 五、被积函数中含有导数或变限函数的积分 六、对称区间上的定积分,周期函数的定积分 七、含参变量带绝对值号的定积分 3反常积分及其计算 内容精讲 一、定义 二、重要性质、定理、公式例题分析 一、反常积分的计算 二、关于奇、偶函数的反常积分 三、关于反常积分敛散性的判定 4定积分的应用 内容精讲 一、基本方法 二、重要几何公式与物理应用例题分析 一、几何应用 二、物理应用 5定积分的证明题 内容精讲 例题分析 一、讨论变限积分所定义的函数的奇偶性、周期 性、极值、单调性等 二、由积分定义的函数求极限 三、积分不等式的证明 四、零点问题 自测题 自测题答案与提示 第四章 多元函数微积分学 考点与要求 1多元函数的极限、连续、偏导数与全微分 内容精讲 一、多元函数 二、二元函数的极限与连续 三、二元函数的偏导数与全微分 例题分析 一、讨论二重极限 二、讨论二元函数的连续性、偏导数存在性 三、讨论二元函数的可微性 2多元函数的微分法 内容精讲 一、复合函数的偏导数与全微分 二、隐函数的偏导数与全微分 例题分析 一、求复合函数的偏导数与全微分 二、求隐函数的偏导数与全微分 3极值与最值 内容精讲 一、无条件极值 二、条件极值 例题分析 一、无条件极值问题 二、条件极值(最值)问题 三、多元函数的最大(小)值问题 4二重积分 内容精讲 一、二重积分的定义及几何意义 二、二重积分的性质 三、二重积分的计算 例题分析 一、计算二重积分 二、累次积分交换次序及计算 三、与二重积分有关的综合题 四、与二重积分有关的积分不等式0 自测题 第五章常微分方程 考点与要求 1常微分方程 考点与要求 一、微分方程的基本概念 二、常见的几类一阶方程及解法 三、可降阶的高阶微分方程 四、高阶线性方程 例题分析 一、微分方程求解 二、微分方程的综合题 三、微分方程的应用 自测题 第二篇线性代数 第一章行列式 考点与要求 内容精讲 例题分析 一、数字型行列式的计算 二、抽象型行列式的计算 三、行列式|A|是否为零的判定 四、关于代数余子式求和 自测题 第二章矩阵 考点与要求 内容精讲 1矩阵的概念及运算 一、矩阵的概念 二、矩阵的运算 三、矩阵的运算规则 四、特殊矩阵 2可逆矩阵 一、可逆矩阵的概念 二、n阶矩阵A可逆的充分必要条件 三、逆矩阵的运算性质 四、求逆矩阵的方法 3初等变换、初等矩阵 一、定义 二、初等矩阵与初等变换的性质 4矩阵的秩 一、矩阵秩的概念 二、矩阵秩的公式 5分块矩阵 一、分块矩阵的概念 二、分块矩阵的运算 例题分析 一、矩阵的概念及运算 二、特殊方阵的幂 三、伴随矩阵的相关问题 四、可逆矩阵的相关问题 五、初等变换、初等矩阵 六、矩阵秩的计算 自测题 第三章 向量 考点与要求 内容精讲 1 向量、向量组的线性相关性 2极大线性无关组、秩 3 内积,正交规范化方法 例题分析 一、线性相关性的判别 二、向量的线性表示 三、向量组线性无关的证明 四、秩、极大线性无关组 五、正交矩阵、施密特正交化方法 自测题 第四章线性方程组 考点与要求 内容精讲 1克拉默法则 2 齐次线性方程组 3非齐次线性方程组 例题分析 一、线性方程组的基本概念题 二、线性方程组的求解 三、基础解系 四、AX=0的系数行向量和解向量的关系,由AX=0的基础解系反求A 五、非齐次线性方程组系数列向量与解向量的关系 六、两个方程组的公共解 七、同解方程组 八、线性方程组的有关杂题 自测题 第五章特征值、特征向量、相似矩阵 考点与要求 内容精讲 1特征值、特征向量 一、定义 二、特征值的性质 三、求特征值、特征向量的方法 2相似矩阵、矩阵的相似对角化 一、定义 二、矩阵可相似对角化的充分必要条件 三、相似矩阵的性质及相似矩阵的必要条件 3 实对称矩阵的相似对角化 一、定义 二、实对称阵的特征值,特征向量及相似对角化 三、实对称矩阵正交相似于对角阵的步骤 例题分析 一、特征值,特征向量的求法 二、两个矩阵有相同的特征值的证明 三、关于特征向量及其他给出特征值特征向量的方法 四、矩阵是否相似于对角阵 五、利用特征值、特征向量及相似矩阵确定参数 六、由特征值、特征向量反求A 七、矩阵相似及相似标准形 八、相似对角阵的应用 自测题 第六章二次型 考点与要求 内容精讲 1二次型的定义、矩阵表示,合同矩阵 一、二次型概念 二、二次型的矩阵表示 2化二次型为标准形、规范形合同二次型 一、定义 3正定二次型、正定矩阵 一、定义 例题分析 一、二次型的矩阵表示 二、化二次型为标准形、规范形 三、合同矩阵、合同二次型 四、正定性的判别 五、正定二次型的证明 六、综合题 自测题
版权页: 插图:
《金榜图书•2014李永乐•王式安考研数学系列:考研数学复习全书(数学2)(权威升级版)》对考试大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析。书中还对历年真题中常见的题型进行归纳分类,总结各种题型的解题方法。
无
内容还是很好的 就是纸张质量一般
大家都在用,不错的书
书挺好的,基础知识很全面,考研必备!
很强大的一本书,真的很不错
用起来还不错,课题买。
好薄哦! 看没怎么看 不清楚到底内容怎么样
因为觉得这书还不错,所以也想推荐给大家
很详细的。周围同学很多都在用。
不错,没发现什么错误,解释全面。不错。物流也快。
很详细要知识点很全面
书还行,但好像不是正版。
我是应届毕业生,买来参考书,内容全面,还可以
还好不错,就是被偷了·
考研数学复习经典,不谈了。。。。
结合教材来看,复习全书把教材内容拆分归类了,但是内容之间的联系性感觉几乎没有了,有种不系统的感觉。